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A Evaluating the information and efficiency gain measures in
linearized Gaussian models

Here I provide some details on how to evaluate the information and efficiency gains
measures presented in Section 3 for the case of linearized Gaussian DSGE models. The
reduced form solution of a typical linearized DSGE model can be represented as follows:

yt = s(θ) + C(θ)xt (A.1)
xt = A(θ)xt−1 +B(θ)vt, x0 = B0(θ)v0 (A.2)
vt ∼ N (0, Inv) , wt ∼ N (0, Inw) (A.3)

where yt is a ny-dimensional vector of observed variables, wt is nw-dimensional vector of
measurement errors, xt is nx-dimensional vector of state variables, vt is nv-dimensional
vector of structural shocks, s is a ny-dimensional vector, C is a ny × nx matrix, A is a
nx × nx matrix, B and B0 are nx × nv matrices.

A.1 Conditional distribution of z given y

We can write (A.1) and (A.2) in a stacked form as

y1
y2
y3
...
yT


︸ ︷︷ ︸

y

=



s
s
s
...
s


︸ ︷︷ ︸

S

+



C 0 0 . . . 0
0 C 0 . . . 0
0 0 C . . . 0
... ... ... . . . ...
0 0 0 . . . C


︸ ︷︷ ︸

C



x1
x2
x3
...
xT


︸ ︷︷ ︸

x

(A.4)

and 

I 0 0 . . . 0
−A I 0 . . . 0
0 −A I . . . 0
... ... . . . . . . ...
0 0 . . . −A I


︸ ︷︷ ︸

H



x1
x2
x3
...
xT


︸ ︷︷ ︸

x

=



AB0 B 0 . . . . . .
0 0 B . . . . . .
0 0 0 . . . . . .
... ... ... ... ...
0 0 0 . . . B


︸ ︷︷ ︸

L



v0
v1
v2
...
vT


︸ ︷︷ ︸

v

(A.5)

Letting M = H−1L (note that H is lower triangular matrix with ones on the main
diagonal, thus invertible), we have
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y = S +Cx
x = Mv
v = v

⇒

 y
x
v

 =

 S
0T×nx
0T×nv

+

 CM
M
IT×nv


︸ ︷︷ ︸

Λ

v (A.6)

Note that v ∼ N (0, IT×nw) and Σ = ΛΛ′ is a singular matrix. Using the definition
in Rao (2001, Chapter 8), (y′,x′,v′)′ has a singular normal distribution with mean(
S′,0′T×nx ,0

′
T×nv

)′
, and covariance matrix Σ. Therefore, the marginal distribution of

every subset of elements of (y′,x′,v′)′ is also singular normal distribution. In particular,
collecting the unique elements of (x′,v′)′ into the vector z, it follows that (y′, z′)′ is a
vector with singular normal distribution. Moreover, the conditional distribution of z
given y is singular normal, with mean E (z|y) = ΣzyΣ

†
yy (y − S) and covariance matrix

V (z|y) = Σzj |y = Σzz − ΣzyΣ
†
yyΣyz, where Σ†yy is the generalized inverse of Σyy,

and Σrc is the submatrix of Σ obtained by removing all row indices other than those
corresponding to the elements of r and all column indices other than those corresponding
to the elements of c. Note that z contains the realizations of all – endogenous and
exogenous – latent variables in the model. The conditional distribution of the realizations
of a single latent variable zj given y is derived analogously, by selecting the row and
column indices of Σ that correspond to the indices of the elements of zj in the vector
(y′,x′,v′)′.

A.2 Fisher information matrix

From (A.6) we have that the marginal distribution of y is Gaussian with mean Ey = S
and covariance matrix V (y) = Σy = CMM ′C ′. The (k, l)-th element of Fisher
information matrix is given by (see Kay (1993, Chapter 3.9) for proof)

{I}k,l = 1
2 tr

(
Σ−1
y ∂kΣyΣ

−1
y ∂lΣy

)
+ ∂kS

′Σ−1
y ∂lS (A.7)

where I have used ∂iX to denote the derivative of a matrix X w.r.t. θi. The required
derivatives of S and Σy with respect to the elements of θ are straightforward to obtain
once we have the derivatives of the matrices A, B, C and s from (A.1) and (A.2), which
can be computed as shown in Iskrev (2008). For instance, the derivative of Σy with
respect to θi is

∂iΣy = ∂iCMM ′C ′ +C∂iMM ′C ′ +CM∂iM
′C ′ +CMM ′∂iC

′ (A.8)

The definition of C (see (A.4)) show how to obtain ∂iC from ∂iC. Furthermore, using
that ∂iX−1 = −X−1∂iXX

−1, and M = H−1L we have

∂iM = −H−1∂iHH
−1L+H−1∂iL (A.9)
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which shows how to construct ∂iM from the derivative of H , which is a simple function
of A(θ), on one hand, and that of L, which is a simple function of A(θ), B(θ) and B0(θ)
(see (A.5)). Note that in (A.2) I have left B0(θ), which determines the variance of the
initial state x0, unspecified. Typically it is assumed that the distribution of the initial
state is the same as the unconditional distribution of x, in which case B0 will be a simple
function of A and B.

The asymptotic information matrix can be computed as in Whittle (1953) by using
a frequency domain approximation of the likelihood function (see also Davies (1983)).
The approximation involves replacing the covariance matrix of the joint distribution Σy

with a circulant matrix, which can be diagonalized and is thus much cheaper to invert.
As Whittle (1953) showed, the (k, l)-th element of the asymptotic information matrix
for a multivariate Gaussian process with zero mean is:

{I1}k,l = 1
4π

∫ π

−π
tr
(
∂F (ω)
∂θk

F−1(ω)∂F (ω)
∂θl

F−1(ω)
)
, (A.10)

where F (ω) is the spectral density matrix of the zero-mean process yt − s(θ). {I1}k,l
reflects information about θ contained only in the second order moments of data. The
information about θ in the mean of yt is given by (see Qu and Tkachenko (2012) )

{I2}k,l = 1
2π

(
∂s

∂θk

)′
F−1(0)

(
∂s

∂θl

)
(A.11)

The full information matrix is I = I1 + I2. To compute it we need the derivatives
of s = s(θ) and F (ω) = F (ω,θ) with respect to θ. The derivative ∂F (ω)/∂θk, can be
obtained using that the spectral density matrix for the model in (A.1)-(A.2) is (see for
instance Hansen and Sargent (2013))

F (ω) = 1
2πCΨ−BB′Ψ+C ′ (A.12)

where Ψ− = (Inx − A exp(−iω))−1 and Ψ+ = (Inx − A′ exp(iω))−1. Therefore, we have

∂iF (ω) = ∂iCΨ−BB′Ψ+C ′ + C∂iΨ−BB′Ψ+C ′ + CΨ−∂iBB′Ψ+C ′ +
CΨ−B∂iB′Ψ+C ′ + CΨ−BB′∂iΨ+C ′ + CΨ−BB′Ψ+∂iC

′

where

∂iΨ− = −Ψ− (Im − ∂iA exp(−iω)) Ψ− (A.13)

and similarly for Ψ+.
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B Schmitt-Grohé and Uribe (2012) model
The model economy is populated by a continuum of identical agents each maximizing
the following lifetime utility function

E0

∞∑
t=0

βtζt

[
Ct − bCt−1 − ψHθ

t St
]1−σ
− 1

1− σ , (B.1)

where ζt is a preference shock, Ct is consumption, Ht is hours worked, and St is a
geometric average of past habit-adjusted consumption: St = (Ct − bCt−1)γ S1−γ

t−1 . The
household budget constraint is given by

Ct + AtIt + Tt = WtHt + rtutKt + Pt, (B.2)

where At is a non-stationary investment specific productivity growing at rate µat . The
variable Tt denotes lump-sum taxes, Wt is the wage rate, rt is rental rate of capital, ut is
capacity utilization, Kt is capital stock, and Pt denotes profit. The law of motion for
capital stock is

Kt+1 = (1− δ(ut))Kt + zIt It

[
1− κ

2

(
It
It−1
− µI

)]
, (B.3)

where It is investment, δ is the rate of depreciation – an increasing function of the rate of
capacity utilization ut, κ is a parameter that determines the convexity of the investment
adjustment cost function, µI is is the steady state growth rate of investment, and zIt is a
stationary investment specific productivity shock.

Final good Yt is produced with the following production function:

Yt = zt(utKt)αk(XtHt)αh(XtL)1−αk−αh , (B.4)

where zt is a stationary neutral productivity shock, L is a fixed factor of production,1
and Xt is a non-stationary neutral productivity growing at rate µxt .

The labor input Ht, which is used by final-good-producing firms, is obtained by
combining differentiated labor services Hjt supplied by monopolistically competitive
labor unions,

Ht =
[∫ 1

0
H

1
1+µt
jt dj

]1+µt
, (B.5)

where µt is a wage markup shock with steady state value µ > 1.
Each period the government spends an amount Gt, financed with lump-sum taxes.

Gt is determined exogenously and is assumed to grow at rate XG
t , defined as a smoothed

1The fixed factor of production generates decreasing returns to scale in the two variable factors of
production Kt and Ht. As shown by Jaimovich and Rebelo (2009) this allows for a positive response of
the value of the firm to future expected increases in productivity.
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version of the trend in Yt, given by XY
t = XtA

αk/(αk−1)
t .

Each of the seven shocks is driven by three independent innovations, two antic-
ipated and one unanticipated. More precisely, the process governing shock xt for
x = µa, µx, zI , z, µ, g, ζ is given by

ln(xt/x) = ρx ln(xt−1/x) + σ0
xε

0
x,t + σ4

xε
4
x,t−4 + σ8

xε
8
x,t−8, (B.6)

where εjx,t for j = 0, 4, 8 are independent standard normal random variables.
SGU report results based on estimation of the model using quarterly data on seven

macroeconomic series: the growth rate of per capita real GDP (yt = 4 ln Yt) contaminated
with a measurement error, the growth rates of real consumption (ct = 1004 lnCt), real
investment (it = 1004 lnAtIt), real government expenditure (gt = 1004 lnGt), and
hours (ht = 1004 lnHt), and the growth rates of the relative price of investment
(at = 1004 lnAt) and of total factor productivity (tfpt = 1004 lnTFPt).2

In addition to these variables, the model makes predictions about the behavior of
two asset price variables: the value of the firm and the risk-free real interest rate. The
value of the firm V F can be computed as

V F
t = Yt −WtHt − AtIt + βEt

Λt+1

Λt

V F
t+1, (B.7)

where Λt is the Lagrange multiplier associated with the household’s budget constraint.
The risk-free real interest rate is given by

Rt = 1
β

Λt

EtΛt+1
. (B.8)

In estimation, the value of the firm can be matched to stock price data. In particular,
vft = 4 ln V F

t can be represented with the growth rate of the real per capita value of the
stock market. Similarly, data on rt = logRt can be obtained by deflating the nominal
rate on the three-month Treasury bill by the inflation rate implied by the GDP deflator.

2The growth rate of total factor productivity in the model is given by tfpt =
100 (4 ln zt + (1− αk) lnµxt ).
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Table B1: Parameter values, SGU (2012) model

parameter MLE posterior median

θ Frisch elasticity of labor supply 5.39 4.74
γ wealth elasticity of labor supply 0.00 0.00
κ investment adjustment cost 25.07 9.11
δ2/δ1 capacity utilization cost 0.44 0.34
b habit in consumption 0.94 0.91
ρxg government spending 0.74 0.72
ρz AR stationary neutral productivity 0.96 0.92
ρµa AR non-stationary investment-specific productivity 0.48 0.48
ρg AR government spending 0.96 0.96
ρµx AR non-stationary neutral productivity 0.27 0.38
ρµ AR wage markup 0.98 0.98
ρζ AR preference 0.10 0.17
ρzI AR stationary investment-specific productivity 0.21 0.47
σ0
z std. stationary neutral productivity 0 0.62 0.65
σ4
z std. stationary neutral productivity 4 0.11 0.11
σ8
z std. stationary neutral productivity 8 0.11 0.09
σ0
µa std. non-stationary investment-specific productivity 0 0.16 0.21
σ4
µa std. non-stationary investment-specific productivity 4 0.20 0.16
σ8
µa std. non-stationary investment-specific productivity 8 0.19 0.16
σ0
g std. government spending 0 0.53 0.62
σ4
g std. government spending 4 0.69 0.57
σ8
g std. government spending 8 0.43 0.37
σ0
µx std. non-stationary neutral productivity 0 0.45 0.38
σ4
µx std. non-stationary neutral productivity 4 0.12 0.08
σ8
µx std. non-stationary neutral productivity 8 0.12 0.10
σ0
µ std. wage markup 0 1.51 0.50
σ4
µ std. wage markup 4 3.93 4.79
σ8
µ std. wage markup 8 3.20 0.51
σ0
ζ std. preference 0 2.83 4.03
σ4
ζ std. preference 4 2.76 1.89
σ8
ζ std. preference 8 5.34 2.21
σ0
zI std. stationary investment-specific productivity 0 34.81 11.72
σ4
zI std. stationary investment-specific productivity 4 11.99 1.93
σ8
zI std. stationary investment-specific productivity 8 14.91 5.50

Note: The values are taken from Table II of Schmitt-Grohé and Uribe (2012)
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Table B2: CRLBs

parameter ȳ y

θ Frisch elasticity of labor supply 1.65135 0.27551
γ wealth elasticity of labor supply 0.00002 0.00001
κ investment adjustment cost 30.63677 1.50300
δ2/δ1 capacity utilization cost 0.03112 0.00040
b habit in consumption 0.00018 0.00004
ρxg government spending 0.04158 0.02751
ρz AR stationary neutral productivity 0.00178 0.00026
ρµa AR non-stationary investment-specific productivity 0.00371 0.00222
ρg AR government spending 0.00116 0.00055
ρµx AR non-stationary neutral productivity 0.15107 0.02009
ρµ AR wage markup 0.00045 0.00011
ρζ AR preference 0.00685 0.00491
ρzI AR stationary investment-specific productivity 0.02235 0.00100
σ0
z std. stationary neutral productivity 0.03879 0.00488
σ4
z std. stationary neutral productivity q4 2.09192 0.15462
σ8
z std. stationary neutral productivity q8 1.51431 0.14918
σ0
µa std. non-stationary investment-specific productivity 0.03482 0.00177
σ4
µa std. non-stationary investment-specific productivity q4 0.04562 0.00156
σ8
µa std. non-stationary investment-specific productivity q8 0.04740 0.00167
σ0
g std. government spending 0.61389 0.02131
σ4
g std. government spending q4 1.25121 0.11185
σ8
g std. government spending q8 3.22258 0.27854
σ0
µx std. non-stationary neutral productivity 0.09638 0.02098
σ4
µx std. non-stationary neutral productivity q4 1.43272 0.08717
σ8
µx std. non-stationary neutral productivity q8 0.75869 0.07645
σ0
µ std. wage markup 6.52819 0.07706
σ4
µ std. wage markup q4 4.78828 0.46297
σ8
µ std. wage markup q8 6.02596 0.59652
σ0
ζ std. preference 59.14528 0.98231
σ4
ζ std. preference q4 99.49705 9.82559
σ8
ζ std. preference q8 33.00313 3.02169
σ0
zI std. stationary investment-specific productivity 70.24558 5.52009
σ4
zI std. stationary investment-specific productivity q4 104.96769 4.48185
σ8
zI std. stationary investment-specific productivity q8 44.03072 3.50932

Note: y includes all observables, ȳ = y \ (vf , r). The bounds are computed for the MLE
values in Table B1 with T = 207.
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Table B3: Efficiency gains (%)

parameter vf , r vf r

θ Frisch elasticity of labor supply 83 61 78
γ wealth elasticity of labor supply 51 35 28
κ investment adjustment cost 95 94 59
δ2/δ1 capacity utilization cost 99 97 88
b habit in consumption 75 66 27
ρxg government spending 34 17 20
ρz AR stationary neutral productivity 85 66 67
ρµa AR non-stationary investment-specific productivity 40 37 2
ρg AR government spending 52 48 42
ρµx AR non-stationary neutral productivity 87 72 60
ρµ AR wage markup 77 69 14
ρζ AR preference 28 19 9
ρzI AR stationary investment-specific productivity 96 92 78
σ0
z std. stationary neutral productivity 87 59 83
σ4
z std. stationary neutral productivity q4 93 73 72
σ8
z std. stationary neutral productivity q8 90 73 64
σ0
µa std. non-stationary investment-specific productivity 95 95 43
σ4
µa std. non-stationary investment-specific productivity q4 97 96 74
σ8
µa std. non-stationary investment-specific productivity q8 96 96 68
σ0
g std. government spending 97 80 95
σ4
g std. government spending q4 91 89 52
σ8
g std. government spending q8 91 89 55
σ0
µx std. non-stationary neutral productivity 78 50 67
σ4
µx std. non-stationary neutral productivity q4 94 78 71
σ8
µx std. non-stationary neutral productivity q8 90 74 58
σ0
µ std. wage markup 99 70 97
σ4
µ std. wage markup q4 90 84 52
σ8
µ std. wage markup q8 90 85 48
σ0
ζ std. preference 98 89 97
σ4
ζ std. preference q4 90 88 39
σ8
ζ std. preference q8 91 88 50
σ0
zI std. stationary investment-specific productivity 92 91 66
σ4
zI std. stationary investment-specific productivity q4 96 93 81
σ8
zI std. stationary investment-specific productivity q8 92 88 72

Note: The efficiency gain EGθi
(x|ȳ), for (1) x = (vf , r), (2) x = vf , or (3) x = r, is

defined as the reduction in the value of CRLB for θi when all variables are observed, as
a per cent of the value of the CRLB when all variables except those in x are observed.
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y c i h g a tfp

ε0
µa

ε4
µa

ε8
µa

ε0
µx

ε4
µx

ε8
µx

ε0
zI

ε4
zI

ε8
zI

ε0
z

ε4
z

ε8
z

ε0
µ

ε4
µ

ε8
µ

ε0
g

ε4
g

ε8
g

ε0
ζ

ε4
ζ

ε8
ζ

0 1.8 0.81 13 1.4 -0.13 29

0 1.7 0.64 14 1.2 -0.1 41

0 1.9 0.74 14 1.4 -0.07 33

0 3.2 1.5 7.2 1.1 0.58 0.09

0 1.3 0.63 3.9 1.1 0.1 1.1

0 1 0.6 3 1.2 0.14 0.63

0 1.3 -0.16 3.2 1.3 -0.05 0.35

0 1.5 0.07 6.6 1.1 0.09 5.8

0 1.2 0.08 4.5 1.1 0.16 4.2

0 3.4 1.4 4.9 0.65 0.7 -0.45

0 1.3 0.72 3.3 0.94 0.1 0.27

0 1.2 0.82 3.1 1.1 0.2 0.2

0 0.03 0.05 -0.44 0.1 0.04 -0.21

0 -0.22 -0.13 -0.46 -0.12 0.01 -0.44
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Figure B1: Conditional pairwise complementarity between vf and macro variables
at MLE in Schmitt-Grohé and Uribe (2012)
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Figure B2: Conditional pairwise complementarity between r and macro variables
at MLE in Schmitt-Grohé and Uribe (2012)
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Figure B3: Unconditional pairwise complementarity between vf and macro variables
at MLE in Schmitt-Grohé and Uribe (2012)
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Figure B4: Unconditional pairwise complementarity between r and macro variables
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Figure B5: Conditional information gains at the posterior median in
Schmitt-Grohé and Uribe (2012)
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Figure B6: Conditional information gains at the posterior mean in
Herbst and Schorfheide (2014)
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Figure B7: Conditional information gains at the posterior median in
Miyamoto and Nguyen (2015)
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C Avdjiev (2016) model
The representative agent maximizes the following utility function:

E0

∞∑
t=0

βt
[(Ct − θcCt−1) (lt − θllt−1)χ]1−γ − 1

1− γ , (C.1)

where Ct is consumption, lt is leisure, β is the discount factor, γ is the inverse of the
intertemporal elasticity of substitution, χ determines the Frisch elasticity of labor supply,
θc and θl are parameters determining the degrees of habit persistence in consumption
and leisure, respectively. Output is produced using:

Yt = Zt(utKt)α(Xtht)1−α, (C.2)

where Kt is the existing capital stock, ht = 1−lt is hours worked, ut is the rate of capacity
utilization, Zt is a stationary neutral productivity shock, and Xt is a non-stationary
neutral productivity shock.
The law of motion for the stock of capital is:

Kt+1 = (1− δ(ut))Kt + Ωt

[
It −

1
2δ0η

(
It
Kt

− τ
)2
Kt

]
, (C.3)

where It is investment, δ is the rate of depreciation and is an increasing function of the
rate of capacity utilization, Ωt is a stationary investment-specific productivity shock,
τ is the steady-state level of the investment-capital ratio, η is the elasticity of the
investment-capital ratio with respect to Tobin’s q, and δ0 is the steady-state capital
depreciation rate.

There is no government in this economy and output is used for either consumption
or investment:

Yt = Ct + ItAt, (C.4)

where At is a non-stationary investment specific productivity shock.
The main departure from the SGU model is in the way news shocks are introduced

into the model. In particular, the specification of shock precesses in (B.6) is replaced
with

ln(xt/x) = ρlx ln(xt−1/x) + (1− ρlx) ln(xLR
t−1) + σx,uε

u
x,t

ln(xLR
t ) = ρLR

x ln(xLR
t−1) + σx,LRε

LR
x,t ,

(C.5)

where εux and εLR
x are independent standard normal random variables. Avdjiev (2016)

further assumes that 0 < ρlx < 1 and ρLR
x = 0.999, which implies that ln(xLR

t ) can be
interpreted as the long-run component of ln(xt/x).3 Therefore, εLR

x is the anticipated
change in the long-run value of the shock. The model contains only four of the seven

3Note that if ρLR
x = 1 then lim

s→∞
Et ln(xt+s/x) = ln(xLR).
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Table C1: Information content of asset prices: innovations

innovation IG(ȳ) IG(vf , r|ȳ) IG(vf |ȳ) IG(r|ȳ) IG(vf ) IG(r)

εux non-stat. neutral prod. 92.4 5.4 0.1 5.4 3.3 0.3
εLR
x non-stat. neutral prod. LR news 0.2 0.2 0.1 0.1 0.1 0.0
εua non-stat. investment-specific prod. 99.5 0.4 0.3 0.0 1.7 0.8
εLR
a non-stat. investment-specific prod. LR news 42.8 44.7 36.9 3.6 60.5 1.8
εuz stat. neutral prod. 94.8 4.0 0.4 3.8 1.8 52.7
εLR
z stat. neutral prod. LR news 37.2 48.0 9.5 43.0 12.4 31.8
εuω stat. investment-specific prod. 57.8 35.4 35.3 1.1 7.5 3.7
εLR
ω stat. investment-specific prod. LR news 0.0 0.0 0.0 0.0 0.0 0.0

Note: see the note to Table 1 in the main text. ȳ includes the growth rates of output, consumption,
and investment, hours worked, and the relative price of investment.

fundamental shocks present in the SGU model, namely: stationary and non-stationary
neutral productivity shocks and stationary and non-stationary investment-specific pro-
ductivity shocks. All shocks evolve as in (C.5), implying that there are four different
long-run components and eight exogenous innovations, four of which are interpreted as
long run (LR) news shocks.

Avdjiev (2016) argues that the long-run specification of news shocks fits the data
better than the specification in (B.6). Importantly, Avdjiev (2016) uses asset price data
to estimate the model. The two asset price variables used are the growth rate of the
total stock market valuation and the real risk-free rate. These variables are assumed
to be noisy measures of vf and r, which are defined as in Section 4. In addition, five
macroeconomic variables are used in the estimation: the growth rates of output (yt),
consumption (ct), and investment (it), hours worked (ht), and the relative price of
investment (at).

C.1 Information about news shocks

I proceed along the lines of the analysis carried out in Section Section 4.1. Note that
now y is a T × 7 dimensional vector, and ȳ = y\(vf , r) is a T × 5 dimensional vector. I
set T = 236, which is the sample size in Avdjiev (2016), and assume that θ is equal to
the median of the posterior distribution reported in Avdjiev (2016) (see Table C5).

The results are presented in Table C1. Including asset prices among the observables
leads to significant information gains with respect to two of the news shocks – the
anticipated innovations in the non-stationary investment-specific productivity shock εLR

a ,
and the stationary neutral productivity shock εLR

z . Almost all of the gains in the first
case are due to including vf , while in the second most of the information is contributed
by r. However, neither one of the innovations can be fully recovered from y. The total
information gains are around 88% for εLR

a and 85% for εLR
z . The respective unconditional

gains reported in the last two columns are relatively large, implying that, in contrast to
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the SGU model, vf and r contribute significant amounts of non-redundant information
with respect to εLR

a and εLR
z . There is essentially no information in the set of observables

as a whole about the news components of the other two shocks – the non-stationary
neutral productivity shock and the stationary investment-specific productivity shock.
This can be understood from the observation that the standard deviations of these
innovations are estimated to be very small compared to the standard deviations of
the unanticipated innovations to the same shocks.4 Furthermore, since the stationary
investment-specific productivity shock is estimated to be very persistent, the coefficient
on the long-run component in (C.5) is close to zero, making εLR

ω very difficult to identify.
In addition to the two news shocks components, asset prices, and in particular

vf , contribute a significant amount of information with respect to the unanticipated
innovations to the stationary investment specific productivity shock εuω. The small size
of the unconditional gain implies that the contribution of vf is largely a result of the
interactions of that variable with variables in ȳ.

To find out how the contributions of vf and r compare to other variable, Figure
C1 presents conditional information gains for each one of the seven observables. The
results show that vf and r are indeed the most informative variables with respect to
the two identified news shocks. In the case of εLR

z , the conditional information gain
from observing hours worked is somewhat larger than the gain from including vf , but is
smaller than the information gain from observing r. The relative price of investment
is the only other observable with a positive marginal contribution. None of the macro
variables makes a positive contribution with respect to εLR

a . Note that, as in Section 4,
the gains from each variable are conditional on information contained in the remaining
six variables. This is why the results for vf and r are different from the values in Table
C1 (columns 3 and 4). In particular, the information gains with respect to εLR

a due
to either vf or r are larger when the conditioning set includes the other asset price
variable compared to when it does not. This indicates a positive conditional information
complementarity between vf and r with respect to that shock. At the same time, there is
a negative complementarity with respect to the news component in the stationary neutral
productivity shock.5 Additional results from conditional and unconditional information
complementarity analysis are presented in Figures C4 – C7. There is a significant
information complementarity between vf and a with respect to the news components in
two of the shocks – negative with respect to the stationary neutral productivity shock,
and positive with respect to the stationary investment-specific productivity shock. There
is also a positive complementarity between vf and h with respect to the stationary
neutral productivity shock. In the case of r, the only significant complementarity is
with a – positive with respect to the news component in the non-stationary neutral
productivity shock.

Another interesting result in Figure C1 is the apparent lack of information in y, i
4The posterior median estimates are: σLR

x = 0.01 vs. σux = 1.05 and σLR
ω = 0.07 vs. σuω = 9.97.

5Another way to see this is by comparing the joint information gains to the sum of the individual
gains in Table C1.
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Figure C1: Conditional information gains in the model of Avdjiev (2016).

and c. In fact, the conditional information gains are positive but very small, suggesting
near redundancy of these variables. This is easily explained by the observation that the
economy’s resource constraint (see equation (C.4)) implies linear dependence among y, i
and c.6 Stochastic singularity is avoided by assuming measurement errors in all variables.
However, the size of the errors in y, i and c is very small, implying that any one of them
is (nearly) redundant given the other two.

Table C2 reports results on the information content of asset prices with respect to
the four structural shocks and their long-run components. The information gains are
very similar to the ones with respect to the innovations, presented in Table C1, both in
terms of the size of the gains and the contribution of each asset prices variable. This is

6As in the SGU model, the observed investment series is defined as it := 4 lnAtIt.
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Table C2: Information content of asset prices: shocks

shock IG(ȳ) IG(vf , r|ȳ) IG(vf |ȳ) IG(r|ȳ) IG(vf ) IG(r)

µx non-stat. neutral prod. 93.3 4.9 0.1 4.9 3.3 0.4
µLR
x non-stat. neutral prod. LR comp. 0.8 0.4 0.1 0.3 0.1 0.0
µa non-stat. investment-specific prod. 100.0 0.0 0.0 0.0 5.2 3.5
µLR
a non-stat. investment-specific prod. LR comp. 44.3 43.5 35.9 3.5 60.7 3.3
z stat. neutral prod. 95.9 3.0 0.8 2.5 4.6 63.1
zLR stat. neutral prod. LR comp. 37.8 47.5 9.4 42.5 12.4 31.7
ω stat. investment-specific prod. 57.7 35.3 35.3 1.1 7.5 3.7
ωLR stat. investment-specific prod. LR comp. 0.0 0.0 0.0 0.0 0.0 0.0

Note: see note to Table 1 in the main text.

to be expected given that shocks and innovations are closely linked to each other in this
model.

C.2 Information about parameters

Table C3 reports parameter efficiency gains due to observing the two asset price variables.
The gains with respect to the standard deviations of the four news shocks are between
25% and 86%. Similar to the information gains results in Table C1, vf is relatively
more informative for the parameters of the two investment-specific productivity shocks,
while r is more informative about the parameters of the stationary and non-stationary
neutral productivity shocks. Notice that this applies to all parameters of the same shock,
including the autoregressive coefficients and the standard deviations of the unanticipated
shocks.

It is worth pointing out that the news shock parameters, and in particular σx,LR and
σω,LR, are identified, in spite of the earlier finding that there is very little information
about the realizations of the news components of the non-stationary neutral productivity
and stationary investment-specific productivity shocks. Lack of identification would
imply an infinite value of the CRLB. As can be seen in Table C6, which shows the
CRLBs with and without asset prices, they are all finite. The values for σω,LR, however,
are very large, suggesting that the likelihood surface is in fact very flat with respect to
that parameter. Two other parameters with extremely large values of the CRLB are
the cost of capacity utilization parameter δ2 and the Frisch elasticity of labor supply χ.
Notice that, even though the values of the CRLBs of σω,LR an δ2 are almost equal, the
levels of uncertainty they imply are very different since δ2 = 3.91 while σω,LR = 0.07.

To find out how vf and r compare to other observables, Figure C2 shows the
efficiency gains due to each one of the seven variables. Only with respect to one of
the news shock parameters – the standard deviation of the long-run news component
in the non-stationary investment specific-productivity shock (σa,LR), is vf significantly
more informative than any other variable. The relative price of investment is about as
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Table C3: Efficiency gains (%)

parameter vf , r vf r

γ inverse intertemporal elasticity of substitution 18 1 16
χ Frisch elasticity of labor supply 99 44 98
θl habit in leisure, 40 14 37
θc habit in consumption, 36 10 26
δ2 capacity utilization cost 88 83 26
η investment adjustment cost 88 85 21
ρlx AR non-stationary neutral productivity 85 1 85
ρla AR non-stationary investment-specific productivity 19 13 10
ρlz AR stationary neutral productivity 90 17 88
ρlω AR stationary investment-specific productivity 52 47 15
σx,u std. non-stationary neutral productivity 33 5 31
σx,LR std. non-stationary neutral productivity LR news 25 1 25
σa,u std. non-stationary investment-specific productivity 5 4 1
σa,LR std. non-stationary investment-specific productivity LR news 69 54 17
σz,u std. stationary neutral productivity 45 13 45
σz,LR std. stationary neutral productivity LR news 64 24 50
σω,u std. stationary investment-specific productivity 90 89 18
σω,LR std. stationary investment-specific productivity LR news 86 86 10

Note: see note to Table 3 in the main text.
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informative as vf with resect to the standard deviation of the long-run news component
in the stationary investment-specific productivity shock (σω,LR), and is also by far the
most informative variable with respect to the standard deviation of the long-run news
component in the non-stationary neutral productivity shock (σx,LR). Lastly, hours worked
is the most informative variable with respect to the standard deviation of the long-run
news component in the stationary neutral productivity shock (σz,LR).

y c i a vf r h

σω, LR

σuω

σz, LR

σuz

σa, LR

σua

σx, LR

σux

ρ lω

ρ lz

ρ la

ρ lx

0 0 0 80 85 5 12

0 0 1 40 88 14 18

0 0 0 31 29 53 64

15 17 16 17 0 37 68

1 1 2 27 63 32 6

0 0 0 97 4 0 0

0 0 0 99 0 25 46

1 1 1 25 3 29 99

1 1 1 38 43 9 12

20 20 20 27 15 88 57

0 0 0 92 11 8 3

2 2 2 31 3 85 93

0

20

40

60

80

100

Figure C2: Efficiency gains in the model of Avdjiev (2016).

It should be noted that these results are obtained under the assumption that the
standard deviations of the measurement errors are known. Without it the efficiency gains
cannot be computed since the measurement error parameters are not identified unless
the respective variables are observed. This does not affect the conclusions regarding the
contributions of asset prices, but does inflate the efficiency gains with respect to ρlz and
σz,u due to y, c, and i.7

7There are also relatively large and approximately equal efficiency gains with respect to the inverse
intertemporal elasticity of substitution γ and the habit in consumption θc due to y, c, and i.
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Table C4: Information content of asset prices: innovations

innovation IG(ȳ) IG(vf , r|ȳ) IG(vf |ȳ) IG(r|ȳ) IG(vf ) IG(r)

εux non-stat. neutral prod. 92.6 5.4 0.2 5.4 3.3 0.3
εLR
x non-stat. neutral prod. LR news 0.3 0.1 0.0 0.1 0.1 0.0
εua non-stat. investment-specific prod. 99.8 0.1 0.1 0.1 1.7 0.8
εLR
a non-stat. investment-specific prod. LR news 78.8 15.0 6.4 10.0 60.5 1.8
εuz stat. neutral prod. 95.5 3.4 0.1 3.4 1.8 52.7
εLR
z stat. neutral prod. LR news 48.0 40.1 1.8 39.7 12.4 31.8
εuω stat. investment-specific prod. 93.8 3.6 3.6 0.1 7.5 3.7
εLR
ω stat. investment-specific prod. LR news 0.0 0.0 0.0 0.0 0.0 0.0

Note: see the note to Table 1 in the main text. ȳ includes the growth rates of output, consumption,
investment, and TFP, hours worked, and the relative price of investment.

The role of TFP. The results in this section suggest a much greater and more distinct
role of asset prices with respect to news shocks in the model of Avdjiev (2016) compared
to the SGU model. In particular, vf and r are found to be considerably more informative
than any other observed variable with respect to two of the news shocks – the long-run
news components of the non-stationary investment-specific productivity shock (εLR

a ) and
the stationary neutral productivity shock (εLR

z ). One possible explanation of this finding
is that TFP growth is assumed to be observed in the analysis of the SGU model but
not for the model in this section. Since that variable was found to be quite informative
with respect to several anticipated innovations in the SGU model, it is possible that the
contribution of vf and r in the model of Avdjiev (2016) is exaggerated by its exclusion.
To examine this possibility, Table C4 reevaluates the information content of asset prices
assuming that ȳ contains tfp in addition to the other five macro variables. The only
major change compared to Table C1 is with respect to the long-run news component in
the non-stationary investment-specific productivity shock (εLR

a ) and the unanticipated
innovation to the stationary investment-specific productivity shock (εuω). In both cases
the conditional contribution of information by asset prices is much smaller when ȳ
includes tfp. Furthermore, the reduction is almost entirely due to the much smaller
contribution of vf . In the case of εLR

a the conditional information gain of vf decreases
from 37% to 15%, while at the same time the information gain of r increases from 3.6%
to 10%. This implies that there is a negative conditional complementarity between vf

and tfp, and a positive conditional complementarity between r and tfp with respect
to εLR

a . The same type of complementarity between asset prices and tfp is found with
respect to the stationary neutral productivity shock (εLR

z ). However, since the relative
contribution of vf is much smaller, the overall information gain of asset prices with
respect to that shock remains large.

Figure C3 presents the conditional information gains of all eight variables. r is slightly
more informative than tfp, h, vf and a with respect to εLR

a ; it is, however, by far the
most informative variable with respect to εLR

a . Comparing the results against those
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presented in Figure C1 shows that the inclusion of tfp has also a significant impact
on the contribution of information by h and a. For instance, the conditional gain of h
with respect to the non-stationary neutral productivity shock (εux) declines from 80%
when tfp is excluded from ȳ to 1% when it is included. This means that, conditional
on the other observables, h and tfp are close substitutes in terms of information they
contribute about εux. Similarly, there is a strong negative complementarity between tfp
and a with respect to the non-stationary investment-specific productivity shock (εua).

y c i a vf r h tfp

εLRω

εuω

εLRz

εuz

εLRa

εua

εLRx

εux

0 0 0 0 0 0 0 0

0 1 1 1 4 0 4 4

0 0 0 5 0 38 5 3

0 0 0 6 0 3 0 0

0 1 1 4 5 9 6 6

0 0 0 39 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 8 0 5 1 0

0

20

40

60

80

100

Figure C3: Conditional information gains in the model of Avdjiev (2016)
when tfp is observed.

The consequences, in terms of efficiency gains, of adding tfp as an observable are
very similar: the contribution of vf is much smaller than before with respect to most
parameters including σa,LR, for which it is the most informative variable when tfp is
unobserved. The relative importance of r, on the other hand, generally increases, and it
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becomes the variable with the largest contribution with respect to σz,LR. A complete set
of results can be seen in Figure C8.

To summarize, when tfp is among the observed variables, of the two asset prices only
r contributes significantly more information about one of the news shocks than any other
observable. As in Section 4, that shock is the stationary neutral productivity news shock.
Due to the relatively smaller number of shocks in the Avdjiev (2016) model, however,
the information gained from observing r is substantially larger than in the SGU model.

Table C5: Parameter values, Avdjiev (2016) model

parameter value
γ inverse intertemporal elasticity of substitution 0.90
χ Frisch elasticity of labor supply 2.90
θl habit in leisure, 0.12
θc habit in consumption, 0.22
δ2 capacity utilization cost 3.91
η investment adjustment cost 0.29
ρlx AR non-stationary neutral productivity 0.01
ρla AR non-stationary investment-specific productivity 0.32
ρlz AR stationary neutral productivity 0.57
ρlω AR stationary investment-specific productivity 0.91
σx,u std. non-stationary neutral productivity 1.05
σx,LR std. non-stationary neutral productivity LR news 0.01
σa,u std. non-stationary investment-specific productivity 0.95
σa,LR std. non-stationary investment-specific productivity LR news 0.13
σz,u std. stationary neutral productivity 0.93
σz,LR std. stationary neutral productivity LR news 0.92
σω,u std. stationary investment-specific productivity 9.97
σω,LR std. stationary investment-specific productivity LR news 0.07

Note: The values are the posterior median estimates reported in Table D.2 of Avdjiev (2016).
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Table C6: Cramér-Rao lower bounds, Avdjiev (2016) model.

parameter ȳ y

γ inverse intertemporal elasticity of substitution 0.00024 0.00020
χ Frisch elasticity of labor supply 443.84281 6.00170
θl habit in leisure, 0.00995 0.00601
θc habit in consumption, 0.00006 0.00004
δ2 capacity utilization cost 1057.97045 128.57305
η investment adjustment cost 0.00609 0.00071
ρlx AR non-stationary neutral productivity 0.00439 0.00066
ρla AR non-stationary investment-specific productivity 0.00461 0.00371
ρlz AR stationary neutral productivity 0.01160 0.00117
ρlω AR stationary investment-specific productivity 0.00201 0.00097
σx,u std. non-stationary neutral productivity 0.00548 0.00370
σx,LR std. non-stationary neutral productivity LR news 0.00003 0.00002
σa,u std. non-stationary investment-specific productivity 0.00206 0.00196
σa,LR std. non-stationary investment-specific productivity LR news 0.00086 0.00027
σz,u std. stationary neutral productivity 0.00391 0.00214
σz,LR std. stationary neutral productivity LR news 0.02206 0.00790
σω,u std. stationary investment-specific productivity 8.20461 0.79912
σω,LR std. stationary investment-specific productivity LR news 965.05866 132.27654

Note: y includes all observables, ȳ = y \ (vf , r) The CRLBs are computed for the parameter values in Table C5
using T = 236.
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Figure C4: Conditional pairwise complementarity between vf and macro variables
Avdjiev (2016)
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Figure C5: Conditional pairwise complementarity between r and macro variables
Avdjiev (2016)
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Figure C6: Unconditional pairwise complementarity between vf and macro variables
Avdjiev (2016)
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Figure C7: Unconditional pairwise complementarity between r and macro variables
Avdjiev (2016)
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y c i a vf r h tfp
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Figure C8: Efficiency gains in the model of Avdjiev (2016) when tfp is
observed.
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