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Abstract

I propose two measures of the impact of calibration on the estimation of
macroeconomic models. The first quantifies the amount of information introduced
with respect to each estimated parameter as a result of fixing the value of one or
more calibrated parameters. The second is a measure of the sensitivity of parameter
estimates to perturbations in the calibration values. The purpose of the measures is
to show researchers how much and in what way calibration affects their estimation
results – by shifting the location and reducing the spread of the marginal posterior
distributions of the estimated parameters. Such analysis is often appropriate since
macroeconomists do not always agree on whether and how to calibrate structural
parameters in macroeconomic models. The methodology is illustrated using the
models estimated in Smets and Wouters (2007) and Schmitt-Grohé and Uribe
(2012).
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1 Introduction

It is a common practice in the empirical macroeconomic literature to mix estimation of
some model parameters with calibration of others. The rationale behind this approach
is either that some parameters are difficult to identify from available data, or that
their values have been well-established elsewhere in the literature. While these may
be reasonable arguments in some cases, the list of calibrated parameters often includes
some for which the empirical evidence is far from settled, and whose values are simply
taken from previous studies, often based on very different models and data patterns.
Convenience and ease of estimation may be a more plausible explanation of the common
practice of fixing some parameters than the possession of true knowledge of their values.
It is therefore important to understand the impact, if any, parameter calibration has on
model estimation.

The practice of mixing calibration and estimation can have two potentially important
consequences. First, the values of the calibrated parameters may affect the point estimates
of the free parameters.1 Thus, mis-calibration could result in biased estimates of some
estimated parameters. Second, from the point of view of estimation, calibration of some
parameters is equivalent to assuming that their values are known. This may introduce
information about parameters that are estimated. Put differently, by eliminating all
uncertainty with respect to calibrated parameters, one may also remove some of the
uncertainty about freely estimated parameters.

Clearly, not all free parameters are affected equally by calibration. In general, the
size of the impact will depend on the interactions between free and calibrated parameters
in the context of a given model. Except in very simple cases with a small number of
parameters, it is generally difficult to identify, by intuition or heuristic reasoning alone,
which estimated parameters will be affected, in what way and by how much, as a result
of calibrating one or more model parameters.

One possible way of quantifying the amount of information introduced by calibration
is to re-estimate the model in the absence of calibration, and compare the resulting
uncertainty with that of the restricted model. Similarly, the effect of changing the
calibration values can be assessed be re-estimating the model multiple times conditional
on different values of the fixed parameters. Whether or not these are reasonable ways to
proceed depends on how feasible it is to estimate the larger unrestricted model, or to

1Or, in Bayesian context, the location of the posterior distribution of the estimated parameters.
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estimate multiple times the restricted model, and also how strongly one feels about the
reasons for calibration in the first place. Note that estimating the unrestricted model
is almost certain to result in point estimates of the previously fixed parameters that
are different from the calibration values. This might be undesirable if one has strong
views about what those values should be. Furthermore, the point estimates of at least
some freely estimated parameters are likely to be different in the unrestricted model.
This will complicate the comparison of the estimation uncertainty in the restricted and
unrestricted cases.2

The purpose of this paper is to present an alternative approach, which does not
require estimating models more than once, and only uses the estimation results under the
original calibration. The method is based on the asymptotic posterior distribution of the
parameters in the unrestricted case, which is used to construct two different measures.
The first is a measure of the amount of information gained with respect to each free
parameter as a result of knowing the value of one or more calibrated parameters. It
shows the reduction of asymptotic uncertainty as a percent of the uncertainty in the
unrestricted case. The second is a measure of the sensitivity of parameter estimates to
perturbations in the values of different calibrated parameters. In particular, it shows the
sign and the magnitude of the response of different estimated parameters to changes in
the values of the calibrated ones.

The intuition behind the proposed approach is simple: the effect of calibration will
depend on how different parameters interact in a given model. From the point of view
of estimation, these interactions are captured by the parameters’ impact on the model
log-likelihood function. Closely-related parameters are difficult to distinguish on the
basis of their effect on the log-likelihood. Fixing one or more of them provides a lot
of information about the other related parameters, which are also very responsive to
changes in the calibration values. The opposite holds true for unrelated parameters whose
effects on the likelihood function are orthogonal to each other. For instance, consider a
standard business cycle model. In such models there are typically a few parameters that
determine the steady state of the economy. Calibrating some of them will naturally have
a stronger impact on the other steady state-related parameters, both in terms of location

2It is straightforward to think of examples where, because of the choice of calibration values of the
fixed parameters, the estimation uncertainty is much larger than it would be if those parameters were
estimated instead. For instance, if two parameters are nearly unidentifiable when a third one is in a
particular region of the parameter space, but very well identified elsewhere, estimation uncertainty will
be much smaller if the unrestricted model is in a well-identified part of the parameter space, compared
to a restricted model with calibrated value from the poorly identified region.
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and spread of their posterior distribution. On the other hand, more weakly-related
parameters, such as variance coefficients of shocks, are likely to be unaffected.

The measures I propose formalize this intuition. Specifically, I use the asymptotic
Gaussianity of the posterior distribution of the model parameters, and study the effect
of calibration by comparing the mean and variance of the distribution in the unrestricted
case to the same moments in the restricted case, i.e. conditional on some parameters being
known and fixed. Simple closed-form expressions show that the impact of calibration
depends on the model-implied interdependence between free and calibrated parameters,
which is captured by the correlation structure of the asymptotic posterior distribution.

From a Bayesian perspective, calibration of some model parameters could be inter-
preted as having very strong prior beliefs about the values of those parameters. In this
sense, my paper is similar to Müller (2012), who proposed measures of prior sensitivity
and prior informativeness in Bayesian models. As Müller (2012) observes, “likelihood
information about different parameters can be far from independent, so that the marginal
posterior distributions crucially depend on the interaction of the likelihood with the
whole prior.” The same argument implies that calibrating some parameters can have a
significant impact on the posterior distributions of freely-estimated parameters. Unlike
the sensitivity and informativeness measures in this paper, the measures of Müller (2012)
cannot be applied to parameters that are held fixed during estimation since computing
them requires sampling from the posterior distribution of the full parameter vector. As
noted earlier, combining estimation, both frequentist and Bayesian, with calibration
is a rather common practice in the DSGE literature, which makes my contribution
complementary to that of Müller (2012).3

In terms of methodology, my paper is most closely related to Andrews et al. (2017),
who introduced a measure of sensitivity of parameter estimates to the empirical moments
they are based on. The purpose of their analysis is to identify the most influential
moments, which, if misspecified, could result in a large estimation bias. Even though
my measure of sensitivity is with respect to calibrated parameters and not moments,
its derivation is based on the same idea: I use the joint asymptotic distribution of free
and calibrated parameters, whereas Andrews et al. (2017) use the joint asymptotic

3My measures also have somewhat different interpretations from those of Müller (2012). In particular,
I measure the amount of information due to calibration by comparing posterior uncertainty with and
without calibration, while Müller (2012) compares the posterior to the prior uncertainty. Also, my
sensitivity measure shows not only the magnitude of the effect of perturbations in the calibration values,
but also the sign of the effect. Müller’s (2012) sensitivity only shows the magnitude.
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distribution of free parameters and empirical moments. In both cases sensitivity is
measured locally and can be used as an indicator of how robust the estimation results
are to small perturbations in either the calibration values or the moment conditions.
My paper also shares Andrews et al. (2017) larger goal, namely, to help increase the
transparency of estimated structural models by providing easy-to-use tools for assessing
the importance of different estimation assumptions. In the context of DSGE models, I
believe it is important for researchers to discuss not only the reasons for and methods
of calibration, but also the likely impact of calibration on the estimation results. The
measures derived in this paper serve precisely that purpose and can be easily incorporated
into the standard estimation output usually reported in empirical DSGE research.

The remainder of the paper is organized as follows. Section 2 defines and motivates
my measures of information gains and sensitivity. Section 3 illustrates the use of the
proposed measures using two different DSGE models. The models are a new Keynesian
model estimated in Smets and Wouters (2007), and a real business cycle model with
news shocks estimated in Schmitt-Grohé and Uribe (2012). In each case I show how
calibration used by the authors affects their estimation results. Section 4 offers some
concluding remarks.

2 Methodology

This section describes the methodology I use to measure the impact of calibration of
some parameters on the estimation of the free parameters of a model. I assume the
following setup: a researcher has a model that fully characterizes the density function
pT (yT |θ) of a data vector YT = (Y1, . . . , YT ), as a function of a parameter vector
θ ∈ Θ ⊂ Rnθ . The true value of θ is unknown, and is estimated using maximum
likelihood or Bayesian methods subject to the restriction that some elements of θ are
known, and are therefore held fixed in the estimation. Further, I assume that estimation
of the full set of parameters is either not feasible or too costly. Hence, the objective is to
characterize the consequences of calibration using only the estimates of the constrained
model.
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2.1 Asymptotic normality of the posterior distribution

A well-known property of Bayesian estimation procedures is that, asymptotically, they
inherit the properties of the classical maximum likelihood estimator. This is because
the variation in the prior distribution is dominated by the variation in the likelihood
function, resulting in a posterior distribution whose shape moves arbitrarily close to the
shape of the likelihood function. Hence, asymptotically, the posterior distribution is
Gaussian centered at the maximum likelihood estimate with covariance matrix equal
to the inverse of the expected Fisher’s information matrix. This result is commonly
known as the Bernstein-Von Mises theorem, first established for independent data by
Walker (1969), and extended to stationary time series by Heyde and Johnstone (1979)
and Chen (1985), and to non-stationary time series by Phillips and Ploberger (1996) and
Kim (1998).

More formally, suppose that θ̂ is the maximum likelihood estimate of θ and that Î is
the expected Fisher’s information matrix evaluated at θ̂, i.e.

θ̂ = argmax
θ∈Θ

pT (yT |θ) (2.1)

Î = − lim
T→∞

1
T

E
∂2 log pT (yT |θ̂)

∂θ∂θ′

 (2.2)

Let π(θ) be the prior density of θ. Then, the posterior density is defined as

πT (θ|YT ) = pT (YT |θ)π(θ)∫
Θ pT (YT |θ)π(θ)dθ (2.3)

Under suitable regularity conditions and for large T , the posterior distribution of θ is
approximately equal to the normal density with mean θ̂ and covariance matrix Σ̂ given
by the inverse of the Fisher’s information matrix

πT (θ|YT ) ≈ N
(
θ̂, Σ̂

)
, where Σ̂ = Î−1/T (2.4)

Note that a natural implication of the asymptotic normality of the posterior distribution
is that the posterior mean and mode are asymptotically the same, and, as the sample size
grows, both converge to the maximum likelihood estimator. Therefore, instead of MLE
we could equivalently use the mean or the mode of the posterior distribution. Which one
should be used in practice will depend on the point estimates one wishes to focus on.
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2.2 Uncertainty reduction due to calibration

I use the asymptotic distribution to determine the impact of parameter calibration on
the posterior uncertainty of the free parameters. For this, I assume that the calibrated
values are not “wrong”, in the sense of being different from the MLE (or posterior
mean or mode) of the unrestricted model parameter values. Admittedly, this is a strong
assumption, but I make it here in order to determine the pure effect calibration has on
parameter uncertainty, i.e. in the absence of mis-calibration of the fixed parameters. I
will consider the case of erroneous calibration later.

My approach consists of comparing two covariance matrices – that of the asymptotic
posterior distribution when all elements of θ are treated as free, and the one of the
asymptotic posterior distribution of a subset of θ, conditional of the remaining parameters
being fixed. For concreteness, let θ = [θ′1,θ′2]′ and partition Σ and I as follows:

Σ =
 Σθ1 Σθ1θ2

Σθ2θ1 Σθ2

 , I =
 Iθ1 Iθ1θ2

Iθ2θ1 Iθ2

 (2.5)

From (2.4), the asymptotic marginal posterior distribution of θ1 is

πT (θ1|YT ) ≈ N
(
θ̂1, Σ̂θ1

)
(2.6)

Now, suppose that θ2 = θ̂2 is known. The derivatives of the log-likelihood function with
respect to θ2 are zero, hence the Fisher’s information matrix is given by Îθ1 . Therefore,
the asymptotic posterior distribution of θ1 conditional on θ2 = θ̂2 is

πT
(
θ1|YT , θ̂2

)
≈ N

(
θ̂1, Σ̂θ1|θ2

)
, where Σ̂θ1|θ2 = Î−1

θ1 /T (2.7)

An alternative expression for the covariance matrix in (2.7) is obtained by noting that
πT
(
θ1|YT , θ̂2

)
is simply the conditional distribution of θ1 given θ2 = θ̂2. From (2.6)

we know that the joint distribution of these two vectors (given YT ) is asymptotically
Gaussian. Therefore, when θ2 = θ̂2 is known, the variance of the conditional distribution
of θ1 is:

Σ̂θ1|θ2 = Σ̂θ1 − Σ̂θ1θ2Σ̂
−1
θ2 Σ̂θ2θ1 (2.8)

Unless Σ̂θ1θ2 = 0, i.e. θ1 and θ2 are asymptotically independent, the marginal covariance
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matrix Σ̂θ1 is larger than the conditional covariance matrix Σ̂θ1|θ2 . In other words,
knowing θ2 reduces the uncertainty about the vector θ1 as a whole. To quantify the
effect of fixing θ2 on the uncertainty about individual elements of θ1, I define a measure
of information gain (IG) with respect to a parameter θi as the percent reduction in the
asymptotic standard deviation of that parameter, i.e.:

IGθi(θ2) =
(

stdθi − stdθi|θ2

stdθi

)
× 100, (2.9)

where stdθi and stdθi|θ2 are the square roots of the diagonal elements of Σ̂θ1 and Σ̂θ1|θ2 ,
respectively. Since stdθi ≥ stdθi|θ2 > 0, the value of IGθi(θ2) lies in the range between 0
and 100, with IGθi(θ2) ≈ 0 implying that knowledge of θ2 provides little or no information
about θi, while IGθi(θ2) ≈ 100 indicates that knowing θ2 removes most of the uncertainty
about θi.4 It can be seen from (2.8) that the size of the information gain depends on how
correlated θi and θ2 are. In particular, the information gain will be small if the elements
of Σ̂θiθ2 are close to zero, i.e. θi and the parameters in θ2 are asymptotically close to
being orthogonal. On the other hand, if one or more parameters in θ2 are strongly
correlated with θi, knowing θ2 will provide a lot of information with respect to θi.

2.3 Sensitivity to errors in calibration

So far I have maintained the assumption that the calibrated parameter values are
correct, i.e. they coincide with the values one would obtain if all model parameters were
estimated freely. This, of course, is an unrealistic assumption and it is generally difficult
to predict exactly how errors in the value of the fixed parameters will affect the ones
that are estimated. Here I present a simple method for gauging the sign and the relative
magnitude of the bias in a given estimated parameter as a result of errors in calibration.
As before, I use the Gaussian approximation of the posterior distribution of θ. Suppose
that the value of θ2 is fixed at θ̂2 +4θ̂2. The conditional mean of θ1 given θ2 is:

E
[
θ1|θ2 = θ̂2 +4θ̂2

]
= θ̂1 + Σ̂θ1θ2Σ̂

−1
θ24θ̂2 (2.10)

Note that the first term on the right-hand side is the conditional mean of θ1 given
θ2 = θ̂2. Therefore, small deviations of θ2 in the neighborhood of θ̂2 will shift the

4We can have information gain of 100% if a parameter θi is only identifiable when one or more other
parameters are fixed, i.e. stdθi|θ2 < stdθi =∞. In that case stdθi − stdθi|θ2

stdθi
= ∞
∞ which I take to equal 1.
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conditional mean of θ1 by approximately Sθ1,θ24θ̂2, where the sensitivity matrix Sθ1θ2

is defined as

Sθ1θ2 = Σ̂θ1θ2Σ̂
−1
θ2 = −Î−1

θ1 Îθ1θ2 , (2.11)

where the second equality follows trivially from the properties of the inverse of partitioned
matrices (see Exercise 5.16 in Magnus and Abadir (2005)). For an arbitrary pair of
parameters θi ∈ θ1 and θj ∈ θ2, the corresponding element Sθi,θj of the sensitivity matrix
shows the effect of perturbing the value of calibrated parameter θj on the asymptotic
posterior mean value of free parameter θi.

The sensitivity measure in (2.11) is similar to the one proposed by Andrews et al.
(2017) to measure the sensitivity of parameter estimates to reduced-form statistics.
Instead of studying the effect of calibration, Andrews et al. (2017) are interested in the
estimation bias one can expect as a result of violations in certain identifying assumptions.
These violations are expressed as perturbations in the moment conditions on which a
given estimation procedure, such as the generalized method of moments, is based. Similar
to my approach, Andrews et al. (2017) derive their local sensitivity measure using the
asymptotic Gaussian approximation of the joint distribution of structural parameters
and moment conditions.

It is important to stress that the analysis described above is only applicable when
the Fisher’s information matrix is invertible (see equation (2.4)), i.e. when θ is locally
identifiable. At first glance this may appear to be a drawback of the methodology
since calibration is often motivated by the difficulty to identify certain parameters.
In particular, it may be that some parameters are not identifiable unless others are
fixed. This means that the information matrix of θ is singular and the information
gain and sensitivity measures are not defined. Remember, however, that the purpose
of the proposed methodology is to help researchers assess the impact of calibration
on their estimation results. If some parameters have to be fixed in order to make
others identifiable, the effect of calibration is clear – it makes the identification of some
estimated parameters possible. The existing literature on identification in DSGE models
has already discussed how to determine which parameters are not separately identifiable.
Also, there are methods, such as the non-identification curves of Qu and Tkachenko
(2012), that can reveal how changes in calibration values of fixed parameters affect the
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estimates of those free parameter that become identified as a result of calibration.5 Thus,
in principle, researchers already know how to investigate the impact of calibration when
it is done in order to achieve identification. The contribution of the present paper is to
show how to extend that analysis to situations where parameters are fixed even though
they are identifiable.6 It is, of course conceivable, that the set of calibrated parameters
includes both parameters that can and parameters that cannot be identified. In that
case, the vector θ is assumed to include only the identifiable – calibrated and free –
parameters.

2.4 A simple example

An illustration of the sensitivity and information gain measures for a two-parameter
case is shown in Figure 1, where the joint distribution of θ = [θ1, θ2] is Gaussian with
both means equal to zero, variances equal to 1, and correlation coefficient equal to .9.
Sensitivity in this case is equal to .9, which implies that a change of θ2 from 0 to 1,
i.e. a perturbation of one standard deviation, would shift the conditional mean of θ1

by .9× 1 = .9. This represents an increase by .9 standard deviations. The conditional
distribution of θ1 is shown in the figure in green. In addition to the shift in the mean,
we see also that the dispersion of the conditional distribution is smaller than that of the
unconditional distribution. Using the measure of information gain introduced earlier, we
have IGθ1(θ2) = 100× (1−(1−.92))

1 = 81%.
Some intuition for why in this example the value of θ1 increases in response to a

positive perturbation in the value of θ2 can be gained by examining the local properties of
the maximized likelihood function. Specifically, suppose that, instead of the mean of joint
posterior distribution, the point [0, 0] represents the unconstrained maximum of the log-
likelihood function of θ. The inverse of the covariance matrix is the Fisher’s information
matrix, which has ones in the diagonal and −.9 in the off-diagonal positions. Since the
information matrix is also the covariance matrix of the score vector, this implies that the
correlation between the two elements of the score is corr(∂`(θ)/∂θ1, ∂`(θ)/∂θ2) = −.9.
Therefore, the two parameters on average affect the log-likelihood function in the opposite
direction and the effects are of similar magnitude. Since θ̂ = [0, 0] is the mode of the
log-likelihood, any perturbation in θ2 away from 0 will lower the value of the log-likelihood

5The fact that this impact exists was first pointed out by Canova and Sala (2009).
6In practice, complete lack of identification is rarely used as a justification for calibration. It is far

more common to see a weaker claim, such as parameters being “difficult” to identify or estimate.
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Figure 1: Two-parameter example. The figure shows how the conditional distribution
of θ1 depends on the value of θ2.

distribution. To offset the effect of that change, θ1 has to move in the same direction as
θ2. It is easy to show that, for small deviation 4θ2 in θ2, the optimal change 4θ1 in θ1

is given by:

4θ1 = −
∂2`(θ̂)

∂θ2
1

−1 ∂2`(θ̂)
∂θ1∂θ2

4θ2 (2.12)

This is the same expression as above except that in (2.10) the second derivatives of the
log-likelihood function are replaced with their expected values. Hence, the sensitivity
measure can be interpreted in terms of the required adjustment in the value of a free
parameter in order to offset the effect of a perturbation in the value of a calibrated
parameter. Note that the sign and size of that adjustment is determined by the correlation
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between the two elements of the score. If the correlation is positive, instead of negative
as in the example above, the two parameters effect the log-likelihood function in the
same direction, and therefore a positive perturbation in the value of the fixed parameter
results in a negative change in the value of the estimated one. When the correlation is
zero, there is no interaction between the two parameters, and fixing one of them has
no effect on the marginal distribution of the other. Conversely, a correlation coefficient
closer to one in absolute value results in both the sensitivity and information gain being
larger than in the example above.7

This intuition extends to multi-parameter models: starting from the mode of the log-
likelihood function, perturbation of one or more parameters away from their unrestricted
optimal values can be partially offset by adjusting the remaining free parameters away
from their unrestricted optimal values.8 Since there are potentially many parameters
that could be adjusted, the optimal size of the adjustment of each one depends on the
full correlation structure, not just the pairwise correlations between free and calibrated
parameters.

The preceding discussion also helps clarify the role of the asymptotic approximation
in my analysis. As already noted earlier, the effect of calibration derives from the
interdependence between free and calibrated parameters encoded in their joint posterior
distribution. Using the asymptotic normal approximation to that distribution has two
potentially important implications. First, it is a well-known fact that the correlation
matrix fully characterized the dependence structure only in the case of elliptical distri-
butions, such as the multivariate normal distribution. In the general case, correlation
only captures the degree of linear dependence among variables. Therefore, while the
sensitivity measure should deliver accurate predictions about the size of the effect of
small perturbations in the calibration values, it might not do so for large perturbations.
Second, using the asymptotic variance as a measure of estimation uncertainty might
misrepresent the amount of information gained by calibration. Thus, the measures in
this paper should not be relied upon to deliver numerically precise assessment of the
exact impact of calibration on the estimation results. Instead, their main purpose is

7Remember that corr(∂`(θ)/∂θ1, ∂`(θ)/∂θ2) = ±1 means that the likelihood function is flat and θ1
and θ2 are not separately identifiable. Therefore, we can think of the case when the correlation is close
to but smaller than one in absolute value as θ1 and θ2 being weakly identified. In that sense, fixing
weakly identified parameters is associated with large values of the sensitivity and information gain
measures for free parameters that would be weakly identified without calibration.

8The offset can only be partial unless the log-likelihood function is flat at the mode, i.e. the model is
locally unidentified.
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to identify the parameters whose estimates are more likely to have been affected by
calibration, and to shed light on the nature of that effect. In particular, the measures
should make accurate predictions about (1) which estimated parameters are more and
which ones are less sensitive to changes in the value of a given fixed parameter, (2) the
direction of the sensitivity, i.e. positive or negative, and (3) which parameters benefit
more and which – less, in terms of estimation uncertainty, from the calibration of a given
parameter. Some evidence in support of this claim in the context of a small scale DSGE
model is presented in the Appendix, where the measures’ predictions are compared to
simulation-based results. In the next section the measures are used to assess the effect
of calibration on the estimation results in two medium-scale models taken from the
literature.

3 Applications

I now apply the proposed measures to investigate the effect of calibration in two estimated
models: the medium-scale New Keynesian model of Smets and Wouters (2007), and
the real business cycle model with news shocks of Schmitt-Grohé and Uribe (2012). In
each case I take as given the division of the model parameters into freely-estimated and
calibrated ones as well as the estimation results reported in those articles.

3.1 Smets and Wouters (2007)

The Smets and Wouters (2007) (hereafter SW) model is a medium-scale closed-economy
New Keynesian model featuring price and wage rigidities, habit formation, capital
accumulation, investment adjustment cost, variable capital utilization. The model is
estimated with Bayesian methods using US data on output growth, consumption growth,
investment growth, real wage growth, hours worked, inflation and the nominal interest
rate. There are 41 parameters in the model 36 of which are estimated and the other 5
are calibrated. The calibrated parameters are: depreciation rate (δ), steady state wage
mark-up (λw), exogenous spending-output ratio (gy), and the curvature parameters of
goods and labor market aggregators (εp and εw). The reasons SW give for calibrating
these parameters are that δ and gy are difficult to estimate with the observed series,
while λw, εp and εw are not identified. As has been shown previously (see Iskrev (2010)),
λw is in fact identified, while two pairs of parameters – (ξp, εp) and (ξw, εw) are not
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Table 1: Calibrated parameters, SW (2007) model

parameter value
δ depreciation rate 0.025
λw steady state wage markup 1.50
gy exogenous spending-output ratio 0.18
εp curvature of goods market aggregator 10.00
εw curvature of labor market aggregator 10.00

separately identifiable. That is, in the linearized model ξp cannot be distinguished from
εp and ξw cannot be distinguished from εw. This implies that the covariance matrix of
the asymptotic posterior distribution of the full set of parameters is singular and the
measures of information gains and sensitivity are not defined. Therefore, here I will
study the effect of fixing 3 of the 5 parameters, namely δ, λw, and gy, on the distribution
of the 36 parameters which SW estimate, conditional on the curvature parameters of
goods and labor market aggregators (εp and εw) being both fixed at 10, as in the original
article.9 I consider the same values for the calibrated parameters as in SW, shown in
Table 1, while for the estimated parameters I take the posterior mean reported in the
article – see Table 2. I use these values to compute the measures of sensitivity to and
information gains from calibration.

The information gains due to calibration of δ, λw, and gy are reported in panel (a) of
Figure 2. The gains are zero or close to zero for 11 of the free parameters, and exceed 10%
for 8 parameters. The largest information gains are with respect to the wage stickiness
parameter ξw – almost 60%, and with respect to the elasticity of labor supply σc – about
40%. There are also significant gains of about 20% with respect to the discount factor β̄
and the investment adjustment cost parameter ϕ.

To better understand how individual calibrated parameters contribute to the total
information gains, in panels (b), (c), and (d) of the same figure I report the size of
the gains from fixing only one of the three parameters at a time, either δ, λw, or gy,
respectively, while keeping the other two parameters free. This exercise shows that most
of the larger gains – those with respect to ξw, σc, ϕ, and β̄, are due to information
obtained from knowing the value of λw alone. Knowing the value of δ provides significant

9Since lack of identification implies infinite variance of the asymptotic marginal posterior distribution,
in the case of ξp and ξw we have information gains of 100% due to fixing εp and εw, respectively.
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Table 2: Estimated parameters, SW (2007) model

parameter value
ρga productivity shock in government spending 0.52
l̄ steady state hours 0.54
π̄ steady state inflation 0.79
β̄ normalized discount factor (a) 0.17
µw MA wage markup 0.84
µp MA price markup 0.70
α capital share 0.19
ψ capacity utilization cost 0.55
ϕ investment adjustment cost 5.74
σc elasticity of intertemporal substitution 1.38
λ habit 0.71
Φ fixed cost in production 1.60
ιw wage indexation 0.59
ξw wage stickiness 0.70
ιp price indexation 0.24
ξp price stickiness 0.65
σl elasticity of labor supply 1.84
rπ monetary policy response to inflation 2.05
r4y monetary policy response to change in output gap 0.22
ry monetary policy response to output gap 0.09
ρ interest rate smoothing 0.81
ρa AR productivity shock 0.96
ρb AR risk premium shock 0.22
ρg AR government spending shock 0.98
ρI AR investment specific shock 0.71
ρr AR monetary policy shock 0.15
ρp AR price markup shock 0.89
ρw AR wage markup shock 0.97
γ trend growth rate 0.43
σa standard deviation productivity shock 0.46
σb standard deviation risk premium shock 0.24
σg standard deviation government spending shock 0.53
σI standard deviation investment specific shock 0.45
σr standard deviation monetary policy shock 0.25
σp standard deviation price markup shock 0.14
σw standard deviation wage markup shock 0.24

Note: The values are of the mean of the posterior distribution of the
Smets and Wouters (2007) model.
(a) β̄ = 100(β−1 − 1) where β is the usual discount factor.
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amount of information with respect to α, ψ, and ρa. The least informative of the
three calibrated parameters is gy, which nonetheless contributes a substantial amount of
information with respect to Φ, σg and ψ.

Turning to the sensitivity of the parameter estimates to changes in the calibration
values, Figure 3 plots the values of the sensitivity measure. To make the values compara-
ble, I scale sensitivity by the standard deviations of the parameters so that the displayed
values show the change, in terms of standard deviations of the respective parameter,
to a one standard deviation increase in the value of each calibrated parameter.10 The
results closely mirror those in Figure 2. The largest impact is on the estimate of ξw,
which drops by 0.9 standard deviations as a result of one standard deviation increase in
λw. Perturbing the value of λw also has a significant impact on the values of σc, ϕ, and
β̄, raising by more than .6 standard deviations the values of the first two parameters
and reducing by almost .6 standard deviations the value of β̄. As before, the strongest
impact from a change in δ is on α, ψ, and ρa, all of which decrease by about 0.5 standard
deviations as a result of a one standard deviation increase in δ. In the case of gy, the
impact is again most pronounced with respect to Φ, ψ, and σg, whose values decline by
between .3 and .4 standard deviations due to a one standard deviation increase in gy.

Note that unlike the computation of the information gains with respect to a single
parameter in panels (b), (c) and (d) of Figure 2, the sensitivity measures in Figure 3
are computed assuming that all calibrated parameters remain fixed, and only one of
them is perturbed at a time. In particular, when one of the calibrated parameters is
perturbed only the free parameters are allowed to respond, while the other two calibrated
parameters remain fixed. This was not the case in Figure 2. The distinction may be
important, particularly when there is a strong interdependence among the calibrated
parameters. For instance, if λw and gw are free to adjust when δ is perturbed, there
may be a much smaller response of the other free parameters since some of the effect of
changing δ could be offset by changes in λw and gw. On the other hand, if the calibrated
parameters are close to independent, changing one of them would lead to a small or
no change in the other two, even if those were allowed to adjust. In Figure A1 of the
Appendix I show the sensitivities when only one of the three calibrated parameters is
fixed at a time. The results are very similar to those in Figure 3, implying that there is
only weak interdependence among λw, δ and gw.

10Both standard deviations are computed using the asymptotic covariance matrix of the unrestricted
model.
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In the Appendix I also report pairwise conditional information gains and pairwise
conditional sensitivity values, where for each pair of parameters the conditioning is
on all remaining 37 parameters. The pairwise conditional gains (see Figure A2) show
how much information about a given parameter θi is gained if another parameter θj is
fixed, conditional on knowing all parameters except these two. There are some marked
differences, especially between the conditional and unconditional gains from fixing λw
(compare panel (c) in Figure 2 with panel (b) in Figure A2). Note that the gains
with respect to ξw are very large both conditionally and unconditionally. However, the
conditional information gains with respect to µw, σl, ρw, and σw are much larger than
the unconditional gains for those parameters. In contrast, the unconditional gains with
respect to β̄ and σc are significantly larger than the conditional ones.

These findings underscore the fact that in a multiparameter setting the effect of
calibration cannot be easily discerned using simple bivariate relationships between
individual calibrated and free parameters. Intuitively, one might expect that the effect
will be greater for parameters which, in the model, are functionally closely related to some
calibrated parameters. As the example in Section 2.4 reveals, in a bivariate setting strong
correlation between the scores ∂`(θ)/∂θi and ∂`(θ)/∂θj , which reflects similar functional
roles of θi and θj , would cause fixing one of the two parameters to have a large impact on
the conditional distribution of the other. With more than two parameters, the negative
of corr(∂`(θ)/∂θi, ∂`(θ)/∂θj) represents the conditional correlation between θi and θj,
given the remaining model parameters.11 Differences between the conditional and the
marginal correlation structures can lead to very different conditional and unconditional
information gains, as in the case of the gains due to fixing λw. Consider Figure 4 where
I show two sets of parameters that are strongly related to λw. In particular, panel (a)
displays a conditional correlation network of all parameters connected with λw, while
panel (b) shows a marginal correlation network of the parameters connected with λw. In
both cases, to make the graphs more readable, I show only links between parameters
whose correlation is greater or equal to .4 in absolute value. The full set of marginal and
conditional correlations can be found in Figure 5. It can be seen that µw, σl, ρw, and σw
are strongly conditionally correlated with both ξw and λw, as well as among each other.
This explains the large pairwise conditional information gains in panel (b) of Figure A2,
where the gains from fixing λw are conditional on all other parameters, and in particular

11This follows from the fact that the covariance matrix of the scores is the precision matrix of the
asymptotic posterior distribution, and thus it encodes the conditional correlations between pairs of
parameters given the remaining parameters (see Cramér (1946)).
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ξw, also being fixed. At the same time, the marginal correlations between λw and those
four parameters are too week to show in the graph in panel (b). This is mainly due to
the fact that, because of their functional similarity in the model, λw and ξw are very
strongly correlated both conditionally and unconditionally. As a result, fixing λw while
keeping ξw free provides very little information with respect to µw, σl, ρw, and σw. On
the other hand, the marginal correlations of λw with σc and β̄ are strong, in spite of the
very weak conditional correlations. This implies that these two parameters benefit from
fixing λw only indirectly – through other free parameters which are more closely linked
to λw and whose uncertainty is impacted directly as a result of fixing that parameter. In
the conditional case those parameters are already known and thus fixing λw contributes
little (in the case of σc) or no (in the case of β̄) additional information.

The differences between conditional and unconditional sensitivities can be explained
in a similar fashion. As can be seen by comparing Figures A1 and A3 of the Appendix,
the conditional sensitivities tend to be significantly larger than the unconditional ones.
This is because in the conditional case only one parameter at a time is free to adjust so
as to optimally offset the effect of changing the value of a given calibrated parameter. In
the case of the unconditional sensitivities, all free parameters are allowed to move and
thus the magnitudes of the optimal adjustments tend to be smaller.
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Figure 2: Information gains from calibration. Panel (a) shows the gains from knowing
the values of all calibrated parameters. Panels (b), (c), and (d) show the gains from
knowing only one parameter at a time.
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20



µw

ξw

σl

ρw

σw

λw

ιw

rπ

ry

ρ

ρr

(a) conditional

negative
positive

β̄

σc

ξw

λw

ϕ

λ

ρI

rπ

ρ

σl

r∆y

ρb

ry

σr

ρr

σb

σI

(b) marginal

Figure 4: Conditional and marginal correlation networks of parameters connected with
λw. Both graphs show only edges between parameters whose conditional (panel (a)) or
marginal (panel (b)) correlations are greater than or equal to .4 in absolute value. The
lines thickness is proportional to the strength of correlation, and the color depends on
its sign.

21



ρga l̄ π̄ β̄ µw µp α ψ ϕ σc λ Φ ιw ξw ιp ξp σl rπ r∆y ry ρ ρa ρb ρg ρI ρr ρp ρw γ σa σb σg σI σr σp σw δ λw gy

ρga

l̄

π̄

β̄

µw

µp

α

ψ

ϕ

σc

λ

Φ

ιw

ξw

ιp

ξp

σl

rπ

r∆y

ry

ρ

ρa

ρb

ρg

ρI

ρr

ρp

ρw

γ

σa

σb

σg

σI

σr

σp

σw

δ

λw

gy

1.0 -0.4 0.1 0.2 0.2 -0.2 0.2

1.0 -0.8 0.1

-0.8 1.0 0.1 -0.1

0.3 0.4 1.0 0.1 -0.3 -0.3 -0.8 0.3 0.6 0.1 -0.3 -0.2 -0.4 -0.3 -0.3 0.1 0.1 -0.1 0.2 -0.6 0.2

1.0 -0.2 0.1 0.3 -0.3 0.3 0.3 -0.1 0.2 -0.2 0.3 -0.2 0.3

1.0 -0.1 0.7 0.8 0.7 -0.2

0.2 1.0 0.2 0.4 -0.2 -0.2 0.1 -0.4 -0.5

0.1 -0.3 1.0 0.3 -0.3 0.4 -0.2 -0.4 -0.3 0.1 0.2 0.1 -0.4 -0.1 0.3 0.1 -0.4 0.2 -0.3

0.1 0.1 1.0 0.3 0.4 0.1 -0.5 0.1 -0.1 0.1 -0.1 -0.5 0.1 -0.2 -0.1 0.6

0.1 0.1 -0.2 -0.3 -0.2 0.4 1.0 -0.4 0.1 -0.7 -0.2 0.4 0.3 0.5 0.4 0.4 -0.2 -0.1 -0.2 0.1 -0.3 0.7 -0.2

-0.2 0.5 -0.7 1.0 0.5 -0.3 -0.5 -0.3 -0.1 -0.2 -0.4 -0.2 -0.3 0.4 -0.2 -0.2 0.3 0.2 0.1

-0.2 0.4 0.3 0.2 0.2 0.2 1.0 -0.4 -0.3 -0.2 -0.1 -0.6 0.5 -0.3 -0.4

-0.1 0.2 0.1 -0.1 1.0 -0.1 -0.1 0.1 -0.4 0.6

0.9 0.1 0.1 0.1 1.0 0.2 0.2 -0.2 -0.3 -0.2 -0.1 0.1 -0.2 -0.1 0.2 -0.9

-0.2 0.8 -0.3 -0.1 1.0 0.3 0.5 -0.3

-0.2 0.8 -0.1 -0.5 0.2 -0.6 1.0 -0.2 0.1 0.2 -0.3 0.1 0.3 -0.2 -0.1 -0.3 0.1 0.3

-0.6 -0.1 -0.2 -0.2 -0.2 0.1 0.8 -0.2 1.0 -0.5 0.1 -0.1 -0.2 -0.1 -0.2 -0.1 0.1 0.2 -0.2 -0.1 0.2 0.1

-0.3 -0.1 0.1 0.2 -0.1 0.2 -0.1 -0.2 1.0 0.3 0.8 0.8 0.1 0.2 -0.2 -0.1 0.1 0.2 0.2

0.1 -0.2 0.2 0.3 -0.4 -0.6 0.1 0.1 -0.1 0.3 1.0 0.3 0.1 0.3 0.1 -0.1 0.4 0.2

0.3 0.1 0.2 0.3 0.3 -0.1 -0.3 0.3 0.5 1.0 0.7 0.1 0.2 -0.2 0.1 0.1 0.1

-0.1 0.2 0.1 0.2 0.1 0.6 0.2 1.0 0.1 -0.4 0.4

-0.1 -0.1 0.2 0.1 -0.2 1.0 0.6 0.2 -0.5 0.2

0.2 -0.4 -0.5 -0.3 1.0 -0.8 -0.1

-0.1 -0.1 0.1 0.4 1.0 0.2 -0.1 -0.3 -0.2

0.2 0.2 -0.7 0.3 0.1 1.0 -0.2 -0.6 0.1 -0.2

-0.1 0.1 0.2 0.3 -0.5 1.0 0.2 -0.1

1.0 -0.4 -0.2 -0.8 -0.8 -0.1 1.0 0.3

0.7 -0.8 0.1 0.2 0.5 1.0 0.2 -0.3 0.2

0.1 -0.1 1.0

-0.2 -0.3 1.0 -0.3 0.3 0.3

0.1 -0.3 -0.3 -0.2 -0.8 1.0 0.1

0.1 0.2 1.0 -0.1 -0.3

0.1 0.2 -0.6 0.2 -0.8 1.0 -0.2 -0.1

0.3 -0.1 1.0

0.9 -0.4 -0.4 -0.6 -0.7 0.1 -0.2 -0.8 1.0 -0.3

0.7 0.4 -0.6 0.3 0.2 -0.1 -0.2 -0.1 -0.4 1.0

-0.6 -0.5 0.2 -0.3 -0.1 -0.2 0.4 -0.3 -0.1 0.2 -0.2 0.2 1.0 -0.1

0.8 0.2 0.2 0.4 0.3 -0.1 -0.9 0.2 0.8 0.1 -0.4 0.2 0.1 -0.6 -0.5 0.2 1.0

-0.1 -0.4 0.2 -0.1 -0.2 -0.3 0.3 0.4 0.1 -0.2 0.1 -0.1 0.1 -0.1 -0.5 0.1 1.0

Figure 5: Parameter correlations in the SW model. The lower triangle of the matrix
shows the conditional correlation coefficients between each pair of parameters. The
upper triangle shows the marginal correlation coefficients. The values are obtained from
the joint asymptotic posterior distribution of the parameters evaluated at the posterior
mean in SW. Correlation coefficients smaller than .1 in absolute value are not displayed.
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Table 3: Calibrated parameters, SGU (2012) model

parameter value
αk Capital share 0.225
αh Labor share 0.675
δ0 Steady-state depreciation rate 0.025
β Subjective discount factor 0.99
hss Steady-state hours 0.2
µ Steady-state wage markup 1.15
µa Steady-state gross growth rate of price of investment 0.9957
µy Steady-state gross per capita GDP growth rate 1.0045
σ Intertemporal elasticity of substitution 1
gy Steady-state share of government consumption in GDP 0.2

3.2 Schmitt-Grohé and Uribe (2012)

The Schmitt-Grohé and Uribe (2012) (hereafter SGU) model is a medium-scale closed-
economy real business cycle model augmented with real rigidities in consumption,
investment, capital utilization, and wage setting. The model has seven fundamental
shocks: to neutral productivity (stationary and non-stationary), to investment-specific
productivity (stationary and non-stationary), government spending, wage markups and
preferences. Each one of the seven shocks is driven by three independent innovations,
two anticipated and one unanticipated. More concretely, the process governing shock xt
is given by

ln(xt/x) = ρx ln(xt−1/x) + σ0
xε

0
x,t + σ4

xε
4
x,t−4 + σ8

xε
8
x,t−8, (3.1)

where εjx,t for j = 0, 4, 8 are independent standard normal random variables. The
anticipated innovations ε4

x,t−4 and ε8
x,t−8 are known to agents in periods t− 4 and t− 8,

respectively. Thus, they can be interpreted as news shocks.

The model has 45 parameters, the following 10 of which are calibrated: capital and
labor shares (αk and αh), steady-state depreciation rate (δ0), subjective discount factor
(β), steady-state hours (hss), steady-state wage markup (µ), steady-state growth rate of
price of investment (µa), steady-state gross per capita GDP growth rate (µy), intertem-
poral elasticity of substitution (σ), and steady-state share of government consumption
in GDP (gy). The values of these parameters are listed in Table 3.
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Table 4: Estimated parameters, SGU (2012) model

parameter value
θ Frisch elasticity of labor supply 5.39
γ wealth elasticity of labor supply 0.00
κ investment adjustment cost 25.07
δ2/δ1 capacity utilization cost 0.44
b habit in consumption 0.94
ρxg smoothness of trend in government spending 0.74
ρz AR stationary neutral productivity 0.96
ρµa AR nonstationary investment-specific productivity 0.48
ρg AR governement spending 0.96
ρµx AR nonstationary neutral productivity 0.77
ρµ AR wage markup 0.98
ρζ AR preference 0.10
ρzI AR stationary investment-specific productivity 0.21
σ0
µa std. dev. nonstationary investment-specific productivity 0 0.16
σ4
µa std. dev. nonstationary investment-specific productivity 4 0.20
σ8
µa std. dev. nonstationary investment-specific productivity 8 0.19
σ0
µx std. dev. nonstationary neutral productivity 0 0.45
σ4
µx std. dev. nonstationary neutral productivity 4 0.12
σ8
µx std. dev. nonstationary neutral productivity 8 0.12
σ0
zI std. dev. stationary investment-specific productivity 0 34.81
σ4
zI std. dev. stationary investment-specific productivity 4 11.99
σ8
zI std. dev. stationary investment-specific productivity 8 14.91
σ0
z std. dev. stationary neutral productivity 0 0.62
σ4
z std. dev. stationary neutral productivity 4 0.11
σ8
z std. dev. stationary neutral productivity 8 0.11
σ0
µ std. dev. wage markup 0 1.51
σ4
µ std. dev. wage markup 4 3.93
σ8
µ std. dev. wage markup 8 3.20
σ0
g std. dev. government spending 0 0.53
σ4
g std. dev. governement spending 4 0.69
σ8
g std. dev. governement spending 8 0.43
σ0
ζ std. dev. preference 0 2.83
σ4
ζ std. dev. preference 4 2.76
σ8
ζ std. dev. preference 8 5.34
σmegy std. dev. measurement error in output 0.30

Note: Maximum likelihood estimates of Schmitt-Grohé and Uribe (2012)
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The remaining 35 parameters are estimated using both Bayesian methods and by
maximum likelihood with US data on the growth rates of output, consumption, invest-
ment, government expenditure, the relative price of investment, total factor productivity,
and hours worked. The analysis here uses the maximum likelihood estimates reported in
SGU and reproduced in Table 4. Alternative results based on the median of the posterior
distribution are available upon request.

Checking the rank condition for identification shows that the steady-state hours
parameter hss, which SGU calibrate, is not identified. Therefore, in my analysis I
consider only the remaining nine calibrated parameters. In addition, unlike SGU who
use de-meaned data, I assume that information from both the mean and the covariance
structure of the seven observed variables is used. This is important since most of the
calibrated parameters are related to the steady state of the model and thus information
from the mean is important for their identification.

Figure 6 presents the information gains due to calibration. As in Section 3.1, I report
the gains from fixing all nine parameters (panel (a)), and the individual information
gains from fixing only one parameter at a time (panels (b) to (f)). I do not report
individual information gains from the calibration of αk, µa, µy and gy since they are less
than 1% for all parameters. The total information gains are less than 1% for 3 of the free
parameters, and exceed 10% in the case of 7 parameters. The largest gains are about
50% – with respect to the consumption habit parameter b, and between 35% and 42% for
the parameters of the investment adjustment cost (κ), capacity utilization cost (δ2/δ1),
and the unanticipated innovations to the stationary investment-specific productivity
shock (σ0

zI
). There are also relatively large information gains of around 15% with respect

to the Frisch elasticity of labor supply parameter (θ), and the volatility parameters of
two of the innovations to the wage markup shock (σ0

µ and σ8
µ). Panels (b) to (f) of the

same figure help identify the main sources of the overall information gains. The bulk
of information with respect to b comes from fixing the value of σ, while δ0 is the most
informative calibrated parameter with respect to κ, δ2/δ1, σ0

zI
and θ. Fixing the value

of µ contributes the most to reduce the uncertainty about σ0
µ and σ8

µ, although δ0 is
the most informative parameter to calibrate with respect to σ4

µ. The calibration of β
helps reduce the uncertainty of κ, σ0

zI
, δ2/δ1, and b, while that of αh is only marginally

informative with respect to a few parameters, most notably b.
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Sensitivity to calibration results are presented in Figure 7. As before, I scale the
sensitivity measure so that the values represent the change, in terms of standard deviations
of each free parameter, as a result of a one standard deviation increase in the value of a
given calibrated parameter. Again, I do not show sensitivity results with respect to µa,
µy and gy as they are always smaller than 0.1 in absolute value. Similar to the results in
Figure 6, the largest sensitivities are with respect to δ0. In particular, θ, κ, δ2/δ1, and σ0

zI

all decrease by more than 0.5 standard deviations as a result of one standard deviation
increase in δ0. In the case of δ2/δ1 the sensitivity is more than 0.8 in absolute value. Two
additional parameters – b and σ0

µ, show sensitivity greater than 0.5 in absolute value –
with respect to σ and µ, respectively.

Similarly to the SW model, drawing conclusions about the effect of calibration
on the basis of simple pairwise relationships between fixed and free parameters can
be misleading. For instance, conditionally on the remaining parameters, fixing the
intertemporal elasticity of substitution (σ) can have a very large impact on the wealth
elasticity of labor supply (γ) and the preference shock parameters (σ0

ζ , σ4
ζ , σ8

ζ ). This
can be seen in Figures A5 and A6 of the Appendix, which show conditional information
gain and sensitivity values. On the other hand, from Figures 6 and 7 we see that, when
the other parameters are free to adjust, the effect of fixing σ is very small for γ, σ0

ζ , σ4
ζ ,

and σ8
ζ . As before, this and other similar observations can be explained with the large,

in some cases, differences between conditional and marginal correlation patterns of the
parameters’ impact on the log-likelihood function. This can be observed in Figure 8.

The main conclusion to draw from the findings in this section is that the estimation
results in both the SW and SGU models are influenced by calibration. Not all free
parameters are affected and in many cases the consequences are found to be minor.
However, for some parameters the consequences are quite large. This does not necessarily
mean that the results in the these papers are invalid. Assuming that the calibration
values are well-justified, the point estimates obtained as a result are consistent with
those choices. At the same time, as I have shown, the estimation uncertainty is still
likely to be mis-represented since it is unrealistic to accept that the fixed parameters
are indeed known with certainty.12 To the extent that model predictions depend on
such parameters, it is important to be aware of the possible underestimation of that
uncertainty. More generally, researchers clearly do not always agree on whether and how

12Note that even in the case of the least controversial calibration values – those of parameters that are
directly related to observed long-run ratios – one has to account for estimation uncertainty associated
with those sample moments.
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to calibrate. Providing readers with information about the potential consequences of
calibration should help increase the transparency and improve the credibility of estimated
structural models.

4 Conclusion

Estimation of structural macroeconomic models often assumes the complete knowledge
of some of their parameters. Whether or not this is a reasonable assumption to make is
perhaps an open question. However, it is important to bear in mind that, even when
it is well justified, calibration can have a substantial impact on the estimation results
stemming from parameter interdependence, which is common feature of macroeconomic
models. It is therefore appropriate that researchers who estimate such models by
combining calibration and estimation, discuss not only the reasons for and methods of
calibration, but also the impact it may have on their results.

In this paper I propose two new measures that can be used to shed light on the
consequences of calibration. The first one shows how much information is introduced
with respect to each freely estimated parameter as a result of calibration of one or more
model parameters. The second measures the sensitivity of different parameter estimates
to perturbations in the values of the calibrated parameters. By design, our measures
capture the main ways in which calibration could influence estimation – by changing the
location and reducing the spread of the marginal posterior distributions of the estimated
parameters. Providing readers with information about these effects is important in
recognition of the fact that there may be disagreements among researchers both in terms
of whether certain parameters can reasonably be assumed to be known, and regarding
what their values should be.

The main advantage of the proposed measures is that they are easy to interpret and
simple to compute without requiring additional estimation effort. This makes them
straightforward to incorporate into the standard estimation output reported in empirical
DSGE studies. At the same time, they also have the limitation of being local and hence
valid only in the neighborhood of the original calibration values and parameter estimates.
Needless to say, the measures are not appropriate to use as a substitute for a full-scale
re-estimation of a model under alternative calibration assumptions.
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shows the conditional correlation coefficients between each pair of parameters. The
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SGU. Correlation coefficients smaller than .1 in absolute value are not displayed.
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Appendix

A Figures
A.1 Smets and Wouters (2007) model
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Figure A1: Sensitivity to changes in the calibrated parameters. Each panel shows the
effect of a one-standard-deviation increase in the respective parameter on the value of
each free parameter, in units of standard deviations. Only one parameter is held fixed at
a time.
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Figure A2: Pairwise conditional information gains. The values show the reduction of
uncertainty about a parameter from knowing either the value of δ, λ, or gy, and
conditinal on knowing all other parameters.
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Figure A3: Pairwise conditional sensitivities. The values shows the effect, in units of
standard deviations, of a one-standard-deviation increase in the value of δ, λ, or gy on
the value of each free parameter, assuming all remaining parameters are known and
remain fixed.
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A.2 Schmitt-Grohé and Uribe (2012) model
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Figure A4: Sensitivity to changes in the calibrated parameters. Each panel shows the
effect of a one-standard-deviation increase in the respective parameter on the value of
each free parameter, in units of standard deviations. Only one parameter is held fixed at
a time.
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B Simulations
Model

In this appendix I compare my measures’ predictions about the effect of calibration to
actual outcomes from estimating a model under different calibrations assumptions using
simulated data. To that end I use a simple New Keynesian DSGE model taken from
Fernández-Villaverde et al. (2016). In its log-linearized form the model consists of the
following equations:

x̂t = Et x̂t+1 −
(
R̂t − Et π̂t+1

)
+ Et zt+1 (B.1)

π̂t = β Et π̂t+1 + κp (ŵt + λt) (B.2)
ŵt = (1 + ν) x̂t + φt (B.3)
R̂t = ψπ̂t + σRεR,t, εR,t ∼ N (0, 1) (B.4)
zt = ρzzt−1 + σzεz,t, εz,t ∼ N (0, 1) (B.5)
λt = ρλλt−1 + σλελ,t, ελ,t ∼ N (0, 1) (B.6)
φt = ρφφt−1 + σφεφ,t, εφ,t ∼ N (0, 1) (B.7)

where ψ = 1/β, and κp = 1−ζpβ
ζp

. The variables x̂t, π̂t, ŵt and R̂t are the log-deviations of
output, inflation, wages and the nominal interest rate from their respective steady state
values. There are four shocks in the model: a technology growth shock zt, a preference
shock φt, a price markup shock λt, and a monetary policy shock εR,t.

Fernández-Villaverde et al. (2016) use this stylized model to show how to solve and
estimate DSGE models, and how to evaluate their properties and performance. Among
other things, they use the model to study the sampling distribution of the maximum
likelihood estimator of ζp when the model is correctly specified and the other deep
parameters are assumed to be known and fixed at their true values (see Section 11.1.2).
They do that by repeatedly generating random samples for four observed variable –
output growth (x̂t − x̂t−1 + zt + log(γ)), the labor share (ŵt + log(w∗)), inflation rates
(πt + log(π∗)) and net interest rates (R̂t + log(π∗γ/β)), and evaluating the ML estimator
for each one of them. Here I extend their analysis in two ways. First, I assume that
one of the fixed parameters is mis-calibrated, i.e. during estimation it is held fixed at
a value different from the one used to generate the random samples. This is done for
each calibrated parameter, one at a time, with both positive and negative calibration
errors. The goal of this exercise is to see how sensitive the estimate of ζp is to errors
in the calibration of the fixed parameters. Second, I simulate and estimate the model
assuming that one of the originally calibrated parameters is free and its value has to be
estimated together with that of ζp. Again, this is done for each parameter, one at a time,
and the purpose of the exercise is to find out how the sampling uncertainty about ζp is
affected by uncertainty about the true values of other parameters. The true values of
the parameters are shown in Table B1 and are the same as in Fernández-Villaverde et al.
(2016). Since there are at most 2 free parameters at a time, finding the ML estimator for
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Table B1: Parameter values

parameter value
β discount factor 0.9901
γ growth rate of technology exp(0.005)
λ steady-state price markup 0.15
π∗ target inflation rate exp(0.005)
ζp Calvo probability 0.65
ν Frisch elasticity parameter∗ 0
ρφ AR preference shock 0.94
ρλ AR price markup shock 0.88
ρz AR technology growth shock 0.13
σφ standard deviation preference shock 0.01
σλ standard deviation price markup shock 0.01
σz standard deviation technology growth shock 0.01
σR standard deviation monetary policy shock 0.01

* The Frisch labor supply elasticity is 1/(1 + ν)

each sample is done by a grid search. This virtually guarantees that a global maximum
is always found.

The first exercise requires making a choice about the size of the calibration error.
One possibility is to use the standard deviation of the marginal asymptotic posterior
distribution of each parameter, e.g. an error of plus or minus one standard deviation.
The sampling distributions of ζ̂p for that case are displayed in Figure B1. The sample
size is assumed to be 200. The results show that the estimates of ζp are most sensitive
to calibration errors in ρλ and σλ, while errors in ν, ρφ and β, have small but no-zero
impact. One-standard-deviation errors in the remaining parameters have no impact,
conditional, in each case, on the other parameters being fixed at their true values. In
the case of ρλ, σλ, ρφ and β, positive errors shift the distribution of ζ̂p to the right, i.e.
lead to a positive bias in the estimates, while negative errors result in negative bias.
Calibration error in ν implies an estimation error for ζp with the opposite sign.
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Table B2: Sensitivity of ζ̂p to calibration errors

mis- 1 std. 1%
calibrated simulation analytical simulation analytical
parameter − + − + − + − +

β -0.04 0.03 -0.03 0.03 -1.8 n.a -1.8 1.8
γ 0 0 0 0 0 0 0 0
λ 0 0 0 0 0 0 0 0
π∗ 0 0 0 0 0 0 0 0
ν 0.15 -0.19 0.17 -0.17 n.a n.a n.a n.a
ρφ -0.17 0.15 -0.16 0.16 -0.5 0.5 -0.5 0.5
ρλ -0.57 0.58 -0.58 0.58 -0.9 0.9 -0.9 0.9
ρz 0.01 -0.03 0.02 -0.02 0.0 0 0 0
σφ 0.01 -0.02 0.01 -0.01 0.0 0 0 0
σλ -1.06 0.87 -0.97 0.97 -0.4 0.3 -0.3 0.3
σz 0 0 0 0 0 0 0 0
σR 0 0 0 0 0 0 0 0

See description in the text. The sample size is 200.

Another possibility is to introduce calibration errors that are proportional to the true
value of each parameter, for instance, 1% of the true value. Figure B2 shows the sampling
distributions of ζ̂p for that case, again for samples of size 200. Note that, since the true
values of ν is 0, no calibration errors are shown for that parameter. Also, only the case
of a negative error is displayed for β since adding 1% to the true value results in β = 1
which is not permissable. However, another simulation with proportional errors smaller
than 1% shows that the sampling distribution for positive error is nearly identical to
the one for negative error, but shifted to right of the distribution of ζ̂p when there is no
calibration error. As before, calibration errors in ρλ, σλ, ρφ and β have non-zero impact
on the distribution of ζ̂p. The size of the impact is different, in particular, now errors in
β have the largest effect, followed by ρλ, σλ and ρφ. Such a discrepancy is to be expected
because estimation uncertainty, represented here by the asymptotic standard deviation,
is affected by multiple factors not just the parameter value. This is not an issue in
practice since one would be interested in measuring and comparing how a calibration
error of a given size in a given fixed parameter affects different estimated parameters.
The goal here is to assess the accuracy of the predictions delivered by the analytical
measures introduced in the paper by comparing them to the simulation results. Table
B2 does that, showing, under the label “simulation”, the errors in ζ̂p induced by an error
in each fixed parameter, and under “analytical” - the values of the analytical sensitivity
measure. The errors in ζ̂p are defined as the normalized difference between the mean of
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Table B3: Information gains due to calibration (%)

parameter simulation analytical
β 1 0
γ 0 0
λ 0 0
π∗ 1 0
ν 2 4
ρφ 5 5
ρλ 30 25
ρz 1 0
σφ 0 0
σλ 43 39
σz 0 0
σR 0 0

The information gain is measured as 100 × (x − y)/x where x is the standard
deviation of the distribution of ζ̂p when ζp is one of two estimated parameters
and y is the standard deviation when only ζp is estimated. The sample size is
200.

the sampling distribution of ζ̂p when there is error in calibration and the mean without
miscalibration. As explained above, the normalization is done in two ways: dividing
by the standard deviation of ζ̂p – under the label “1 std.” and dividing by the true
value of ζp and multiplying by 100 – under “1%”. Therefore, the units of the errors are
standard deviations of ζp for a 1 standard deviation error in a fixed parameter, and
percent deviations in ζp for a 1 percent error in a fixed parameter. These normalizations
make the simulation results comparable to the values of the analytical measure in the
table. As can be seen, the analytical measures are very accurate not only in terms
of their qualitative predictions – about the sign and relative magnitude of the effect
of the errors in calibration, but also in terms of the predicted size of the effect. The
main discrepancy between the analytical and simulation results is that the analytical
measure is by construction symmetric, while the simulation results in some case show
some asymmetry in the effect of positive and negative calibration errors.

In the second exercise I compare the sampling uncertainty of ζ̂p when there is
another parameter to estimate to the uncertainty when ζp is the only free parameter.
The reduction of uncertainty, measured my the standard deviation, as a percent of
the uncertainty with two free parameters corresponds to the measure of (conditional)
information gain introduced in the paper. Table B3 shows the simulation results and the
values obtained with the analytical measure of information gain. As above, the sample
size is assumed to be 200. Again, the results are very similar, not only qualitatively but
also numerically. The largest gain for ζp (price stickiness) come from fixing either one of
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Table B4: Sensitivity and information gains for sample size of 80

sensitivity (std) information gain (%)
parameter simulation analytical simulation analytical

− + − +
β -0.04 0.04 -0.03 0.03 0 0
γ 0 0 0 0 0 0
λ 0 1 0 0 0 0
π∗ 0 0 0 0 0 0
ν 0.16 -0.18 0.17 -0.17 5 4
ρφ -0.17 0.15 -0.16 0.16 4 5
ρλ -0.57 0.59 -0.57 0.57 24 25
ρz 0.02 -0.03 0.02 -0.02 0 0
σφ 0.02 -0.01 0.01 -0.01 0 0
σλ -1.05 0.87 -0.97 0.97 38 39
σz 0 0 0 0 0 0
σR 0 0 0 0 0 0

The table shows sensitivity of ζ̂p to calibration errors (for 1 std.) and the
information gains due to calibration. The sample size is 80.

the two parameters of the price markup process. This is in line with the earlier result
about the sensitivity to calibration for calibration errors which are proportional to the
intrinsic uncertainty of the fixed parameters.

Table B4 compares simulation-based results and analytical predictions when the
sample size is assumed to be 80. In the case of the sensitivity measures only sensitivity to
errors of 1 standard deviation are reported. There only very small changes compared to
the earlier results, and the analytical predictions remain very close to the simulation-based
outcomes.
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