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1 Introduction

There is a considerable consensus among academic economists and economic policy makers

that modern macroeconomic models are rich enough to be useful as tools for policy analysis.

It is also well understood that when structural models are used for quantitative analysis, it

is critical to use parameter values that are empirically relevant. The best way to obtain such

values is to estimate and evaluate the models in a formal and internally consistent manner.

This is what the empirical dynamic stochastic general equilibrium (DSGE) literature attempts

to do.

The estimation of DSGE models exploits the restrictions they impose on the joint proba-

bility distribution of observed macroeconomic variables. A fundamental question that arises

is whether these restrictions are sufficient to allow reliable estimation of the model parameters.

This is known in econometrics as the identification problem. To answer it, econometricians

study the relationship between the true probability distribution of the data and the parame-

ters of the underlying economic model (Koopmans (1949)). Such identification analysis should

precede the statistical estimation of economic models (Manski (1995)).

Although the importance of parameter identification has been recognized, the issue is

rarely discussed when DSGE are estimated. Examples of models with unidentifiable param-

eters can be found in Kim (2003), Beyer and Farmer (2004) and Cochrane (2007). That

DSGE models may be poorly identified has been pointed out by Sargent (1976) and Pesaran

(1989). More recently, Canova and Sala (2009) summarize their study of identification issues

in DSGE models with the conclusion that: “it appears that a large class of popular DSGE

structures can only be weakly identified”.

Most of the existing research on identification in DSGE models follows the econometric

literature in which weak identification is treated as a sampling problem, i.e. as something

within the realm of statistical inference (see e.g. Stock and Yogo (2005) and the survey in

Andrews and Stock (2005)). For this reason, the effort has been devoted to either devising

tests for detecting weak identification (Inoue and Rossi (2011)), or to developing methods for

inference that are robust to identification problems (e.g. Guerron-Quintana et al. (2013), Qu

(2014) and Andrews and Mikusheva (2014)).

This paper pursues a different approach, whereby parameter identification is treated as

a property of the underlying economic model. In contrast to other types of models, where

the mapping from economic model to data is only partially known, DSGE models provide a

complete characterization of a data generating process. Thus, identification problems that

may appear in a particular data set must have their origins in the underlying structural

model. Identification problems would occur when the restrictions the model imposes on
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the joint distribution of the observed variables are not sufficiently informative about some

parameters. In that sense identification is a property of the model. However, since the

information content of the restrictions is, in general, a function of the parameter values, the

data also plays a role in providing parameter values for which the model mimics the behavior

of the observed variables.

The purpose of this paper is to show how to conduct identification analysis of DSGE mod-

els. The particular questions of interest include: (1) which model parameters are identified

and which are not; (2) how well identified the identifiable parameters are; (3) what are the

causes for identification problems; (4) what are the main sources of identification; and (5)

how the answers to (1)-(4) change across regions in the parameter space and across different

sets of observables or sample sizes.

A central tool in the proposed approach is the expected Fisher information matrix, the use

of which for identification analysis was first suggested by Rothenberg (1971). The information

matrix measures the curvature of the expected log-likelihood surface and, as Rothenberg

points out, it “is a measure of the amount of information about the unknown parameters

available in the sample”. Identification problems arise when the log-likelihood surface is flat

or nearly flat with respect to some parameters. This can be detected and quantified with

the help of the information matrix. Furthermore, a decomposition of the matrix can be used

to determine the roots of the identification problems. Parameters would be unidentifiable or

weakly identified if the economic features they represent are nearly or completely irrelevant

with respect to the variables used to estimate the model. This may occur either because those

features are unimportant on their own, or because they are nearly redundant given other

features represented in the model. These issues are particularly relevant for DSGE models,

which are sometimes criticized for being too rich in features, and possibly overparameterized

(Chari et al. (2009)).

Papers related to this one are Iskrev (2010), Komunjer and Ng (2011), Qu and Tkachenko

(2012b) and Koop et al. (2013), which consider the parameter identifiability question, and

Canova and Sala (2009), which focuses on the weak identification problem. Iskrev (2010)

presents an identifiability condition that is easier to use and more general than the one devel-

oped here. The condition is based on the Jacobian matrix of the mapping from theoretical first

and second order moments of the observable variables to the deep parameters of the model.

The condition is necessary and sufficient for identification with likelihood-based methods un-

der normality, or with limited information methods that utilize only first and second order

moments of the data. However, that paper does not address the weak identification issue,

which is one of the main themes of this paper. Komunjer and Ng (2011) derive a similar rank

condition for identification using the spectral density matrix, while Qu and Tkachenko (2012b)
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add a condition for identification from a subset of frequencies. Koop et al. (2013) consider pa-

rameter identification in DSGE models from a Bayesian perspective. Canova and Sala (2009)

were the first to draw attention to the problem of weak identification in DSGE models, as well

as discuss different strategies for detecting it. Those include: one and two dimensional plots of

the estimation objective function, estimation with simulated data, and checking numerically

the conditioning of matrices characterizing the mapping from parameters to the objective

function. Canova and Sala (2009) differs from the present paper in several ways. First, they

approach parameter identification from the perspective of a particular limited information

estimation method, namely, equally weighted impulse response matching. In addition to the

model and data deficiencies discussed above, weak identification in that setting may be caused

by the failure to use some model-implied restrictions on the distribution of the data, and by

the inefficient weighing of the utilized restrictions. Consequently, it may be very difficult to

disentangle the causes and quantify their separate contribution to the identification problems.

Second, it is very common in DSGE models to have identification problems that stem from

a near observational equivalence involving a large number of parameters. This means that

the objective function is flat with respect to all of the parameters as a group. The plots used

in Canova and Sala (2009) are limited to only two parameters at a time, and it is far from

straightforward to select the appropriate pairs from a large number of free parameters. Third,

Canova and Sala (2009) do not discuss the role of the set of observables for identification.

The effect of using different observables for the estimation of a DSGE model is investigated

in Guerron-Quintana (2010) who finds that the parameter estimates and the economic and

forecasting implications of the model vary substantially with the choice of included variables.

The last and perhaps most important difference is in the approach itself. A key advantage

of the method described here is that the expected information matrix can be evaluated an-

alytically for linear Gaussian models. As a result, identification analysis can be performed

easily even for large-scale models under different assumptions about the parameter values, the

sample size, the set of observed variables, the choice of parameters to be calibrated instead

of estimated, etc. While it is, in principle, possible to address these questions by conducting

Monte Carlo simulations, this is hardly a viable strategy for most DSGE models. Estimating

a multidimensional and highly non-linear model even once is a numerically challenging and

time consuming exercise. Attempting this many times under different assumptions about the

parameters, the sample size, and the observables would be impractical.

Another important aspect of the identification analysis concerns the sources of identifica-

tion of the parameters. One way to think about this question is in terms of the moments

of the data, which, according to the model, should be most informative about individual

parameters. In Iskrev (2014), this is analyzed using the weights assigned to moments in the
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first order conditions of the general method of moments estimator with optimal weighting

matrix. In the present paper, it is shown how to extend that analysis to likelihood based

estimation, where the weights assigned to moments are obtained from the score vector. In

addition, the question is approached from a frequency domain perspective by asking what

parts of the spectrum are most informative about the parameters of the model.

The remainder of the paper is organized as follows. Section 2 introduces the class of

linearized DSGE models, and outlines the derivation of the log-likelihood function and the

Fisher information matrix for Gaussian models. Section 3 explains the role of the Fisher

information matrix in the analysis of identification, and describes how to evaluate and analyze

the strength of identification and how to determine the sources of identification from the score.

The methodology is illustrated, in Section 4, with the help of the medium-scale DSGE model

estimated in Smets and Wouters (2007). Concluding comments are given in Section 5.

2 Preliminaries

This section provides a brief discussion of the class of linearized DSGE models as well as

the derivation of the log-likelihood function and the Fisher information matrix for Gaussian

models.

2.1 Setup

I consider DSGE models expressed in terms of stationary variables and linearized around the

steady state values of these variables. Such models can be expressed as follows:

Γ0(θ)zt = Γ1(θ) Et zt+1 + Γ2(θ)zt−1 + Γ3(θ)ϵt (2.1)

where zt is an m−dimensional vector of deviations from steady states, and ϵt is an n-

dimensional random vector of structural shocks with ϵt ∼ i.i.d. N (0, In). The elements

of the matrices Γ0, Γ1, Γ2 and Γ3 are functions of a k−dimensional vector of deep param-

eters θ, where θ is a point in Θ ⊂ Rk. The parameter space Θ is defined as the set of all

theoretically admissible values of θ.

The solution of equation (2.1) can be expressed as a linear state space model:

xt = s(θ) +C(θ)zt (2.2)

zt = A(θ)zt−1 +B(θ)ϵt (2.3)

where xt is a l-dimensional vector of observed variables, s(θ) is a l-dimensional vector, C is

5



a l ×m matrix, A is a m×m matrix, and the B is a m× n matrix.

Remark 1. It is straightforward to introduce measurement errors into the system (2.2)-(2.3)

by expanding the vectors zt and ϵt and making the necessary changes in the state space

matrices.

2.2 Log-likelihood function and the information matrix

The log-likelihood function of the data XT = [x′
1, . . . ,x

′
T]

′ can be constructed using the

prediction error method whereby a sequence of one-step ahead prediction errors, et|t−1 =

xt − s − Cẑt|t−1, is constructed by applying the Kalman filter to obtain one-step ahead

forecasts of the state vector ẑt|t−1. The Gaussianity of the structural shocks implies that the

conditional distribution of et|t−1 is also Gaussian with mean zero and a covariance matrix

given by St|t−1 = CPt|t−1C
′, where Pt|t−1 = E

(
zt − ẑt|t−1

) (
zt − ẑt|t−1

)′
is the conditional

covariance matrix of the one-step ahead forecast, and is also obtained from the Kalman filter

recursion. This implies that the log-likelihood function of the sample is given by:

ℓT (θ) = const.− 1

2

T∑
t=1

log(|St|t−1|)−
1

2

T∑
t=1

e
′

t|t−1S
−1
t|t−1et|t−1 (2.4)

Under some regularity conditions, the maximum likelihood estimator θ̃T is consistent, asymp-

totically efficient and asymptotically normally distributed with:

√
T(θ̃T − θ0)

d−→ N
(
0,I−1

0

)
(2.5)

Here I0 is the asymptotic Fisher information matrix evaluated at the true value of θ. That

is

I0 := lim
T→∞

(
1

T
IT

)
(2.6)

where IT is the finite sample Fisher information matrix, defined as:

IT := E

[{
∂ℓT (θ)

∂θ′

}′{
∂ℓT (θ)

∂θ′

}]
(2.7)

The computation of the asymptotic and the finite sample information matrices for Gaussian

linear state space models is discussed, among others, in Zadrozny (1989), Segal and Weinstein

(1989), Zadrozny and Mittnik (1994), and Klein and Neudecker (2000).
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3 Identification Analysis

This section gives an overview of the concept of identification in econometrics, and shows how

to measure the strength of identification, analyze the causes for identification problems and

determine the main sources of identification of the parameters in the model from Section 2.

3.1 General principles

Let a model be parameterized in terms of a vector θ ∈ Θ ⊂ Rk and suppose that inference

about θ is made on the basis of T observations of a random vector x with a known joint prob-

ability density function p(XT ;θ), where XT = [x′
1, . . . ,x

′
T ]

′. When considered as a function

of θ, p(XT ;θ) contains all available sample information about the value of θ associated with

the observed data. Thus, a basic prerequisite for making inference about θ is that distinct

values of θ imply distinct values of the density function. Formally, we say that a point θ0 ∈ Θ

is identified if:

p(XT ;θ) = p(XT ;θ0) with probability 1 ⇒ θ = θ0 (3.1)

This definition is made operational by using the following property of the log-likelihood func-

tion ℓT (θ) := log p(XT ;θ):

E0 ℓT (θ0) ≥ E0 ℓT (θ), for any θ (3.2)

This follows from the Jensen’s inequality (see Rao (1973)) and the fact that the logarithm

is a concave function. It further implies that the function H(θ0,θ) := E0 (ℓT (θ)− ℓT (θ0))

achieves a maximum at θ = θ0, and θ0 is identified if and only if that maximum is unique.

While conditions for global uniqueness are difficult to find in general, local uniqueness of the

maximum at θ0 may be established by verifying the usual first and second order conditions,

namely: (a) ∂H(θ0,θ)
∂θ

|θ=θ0 = 0, (b) ∂2H(θ0,θ)
∂θ∂θ′ |θ=θ0 is negative definite. If the maximum at θ0

is locally unique, we say that θ0 is locally identified. This means that there exists an open

neighborhood of θ0 where (3.1) holds for all θ. Global identification, on the other hand,

extends the uniqueness of p(XT ;θ0) to the whole parameter space. One can show that (see

Bowden (1973)) the condition in (a) is always true, and the Hessian matrix in (b) is equal

to the negative of the Fisher information matrix. Thus, we have the following result of

Rothenberg (1971):

Theorem 1. Let θ0 be a regular point of the information matrix IT (θ). Then θ0 is locally

identifiable if and only if IT (θ0) is non-singular.

A point is called regular if it belongs to an open neighborhood where the rank of the
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matrix does not change. Without this assumption, the condition is only sufficient for local

identification. Although it is possible to construct examples where regularity does not hold

(see Shapiro and Browne (1983)), typically the set of irregular points is of measure zero (see

Bekker and Pollock (1986)). Thus, for most models the non-singularity of the information

matrix is both necessary and sufficient for local identification.

Remark 2. Note that the Rothenberg condition for local identification involves the finite

sample information matrix IT . Non-singularity of the asymptotic information matrix I0

is a condition for asymptotic local identification of the parameters, which means that

plim
1

T
ℓ(θ) ̸= plim

1

T
ℓ(θ0) for all θ in a neighbourhood of θ0 such that θ ̸= θ0. Asymptotic

identification is necessary but not sufficient for identification in the sense discussed here.

Remark 3. When the probability density function is a member of the exponential family,

the non-singularity of the information matrix can be established by checking the rank of a

Jacobian matrix, which is often easier to compute (see Wansbeek and Meijer (2000)). In the

case of a multivariate normal distribution, the Jacobian matrix is constructed using the first

order derivatives of the first and second order moments of the variables. This condition is

used in Iskrev (2010) to check for identification in DSGE models.

Verifying that the model is identified, at least locally, is important since identifiability is

a prerequisite for the consistent estimation of the parameters. Singularity of the information

matrix means that the expected log-likelihood function is flat at θ0 and one has no hope of

finding the true values of some of the parameters even with an infinite number of observations.

Intuitively, this may occur for one of two reasons. Either some parameters do not affect the

expected log-likelihood at all, or different parameters have the same effect on the expected log-

likelihood. This reasoning may be formalized by using the fact that the information matrix

is equal to the covariance matrix of the scores, and therefore can be expressed as:

IT (θ0) = ∆
1
2RT (θ0)∆

1
2 (3.3)

where ∆ = diag(IT (θ0)) is a diagonal matrix containing the variances of the elements of the

score vector, and RT (θ0) is the correlation matrix of the score vector.

Hence, a parameter θi is locally unidentifiable if:

(a) Small changes in θi have no effect on the expected log-likelihood, i.e.

∆i := E

(
∂ℓT (θ0)

∂θi

)2

= −E

(
∂2ℓT (θ)

∂θ2i

)
= 0 (3.4)

(b) The effect on the expected log-likelihood of small changes in θi can be offset by changing

8



other parameters, i.e.

ϱi :=

√
1− 1/Rii

T = 1, (3.5)

where Rii
T is the i-th diagonal element of the inverse of RT . The intuition about the mean-

ing of ϱi comes from a well-known property of the correlation matrix (see e.g. Tucker et al.

(1972)), which imply that ϱi is the coefficient of multiple correlation between the partial deriva-

tive of the log-likelihood with respect to θi and the partial derivatives of the log-likelihood with

respect to the other elements of θ. Both (a) and (b) result in a flat expected log-likelihood

function and lack of identification for one or more parameters. Weak identification, on the

other hand, arises when the expected log-likelihood is not completely flat but exhibits very

low curvature with respect to some parameters. The issue of detecting and measuring weak

identification problems is discussed next.

3.2 Identification strength

The rank condition ensures that the expected log-likelihood function is not flat and achieves

a locally unique maximum at the true value of θ. In general, this suffices for a consistent

estimation of θ. However, the precision with which θ may be estimated in finite samples

depends on the degree of curvature of the expected log-likelihood surface in the neighborhood

of θ0, of which the rank condition provides no information. Nearly flat expected log-likelihood

means that small changes in the value of ℓT (θ), due to random variations in the sample, could

result in very large changes in the value of θ that maximizes the observed likelihood function.

When this occurs, parameter identification is said to be weak in the sense that the estimates

are prone to be very inaccurate even when the number of observations is large. In other words,

a parameter is weakly identified if the degree of precision with which it can be estimated with

a sample of a given size is unacceptably low. In that sense, what “weak” means depends on

what is considered unacceptable, and is therefore a relative not an absolute concept.

As explained in Rothenberg (1971), the curvature of the expected log-likelihood function is

described by the Fisher information matrix. The relationship between the curvature and the

precision of the ML estimator θ̂T can be seen from the asymptotic distribution of the latter.

In particular, (2.5) implies that I−1(θ0)/T is an approximation of the sampling covariance

matrix of θ̂T, and I ii(θ0)/T approximates the sampling variance of θ̂i, where I ii is the i-th

diagonal element of the inverse of the information matrix. The asymptotic normality of θ̂T

may also be used to construct asymptotic joint confidence sets for θ as a whole and asymptotic

confidence intervals for each θi. However, these asymptotic results might be unreliable in finite

samples. Specifically, to accurately characterize the uncertainty about an estimate, one has

to take into account the full shape of the log-likelihood function of the sample. In contrast,
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the asymptotic confidence intervals are constructed on the basis of a quadratic approximation

of the expected log-likelihood whose shape is represented by the curvature. The two types

of intervals may be quite different when the log-likelihood function is far from quadratic. At

the same time, for reasonably smooth functions, the curvature of the log-likelihood function

would be an informative indicator of whether a parameter is well identified or not.

The asymptotic efficiency of MLE means that the estimator has the smallest asymptotic

covariance matrix among all consistent estimators. This follows from the Cramér-Rao theo-

rem which states that the asymptotic covariance of any consistent estimator of θ is bounded

from below by the inverse of the asymptotic information matrix, I0. On the other hand, the

inverse of the finite sample information matrix IT is a lower bound on the covariance matrix

of any unbiased estimator. This implies that bi := I ii
T is a lower bound on the variance of

any unbiased estimator of θi and can be used to measure the strength of identification of indi-

vidual parameters in terms of bounds on one-standard-deviation intervals for the parameters.

There exists a direct relationship between the size of the bounds and the possible causes of

identification problems. Using the decomposition of IT (θ) shown in (3.3) and the properties

of the correlation matrix, it is easy to show that the following relation holds:

bi =
1

∆i(1− ϱ2
i )

(3.6)

Thus, bi may be large either because ∆i ≈ 0 or because ϱi ≈ 1. In the first case, the

parameter is nearly irrelevant as it has only a weak effect on the likelihood. In the second

case, it is nearly redundant because its effect on the likelihood can be approximated very well

by other parameters. Consequently, the value of that parameter will be difficult to pin down

on the basis of information contained in the likelihood function.

It is worth highlighting that strong sensitivity of the likelihood with respect to a param-

eters is not a guarantee that the parameter is well identified. Note that ∆i = E
(
∂ℓT (θ)
∂θi

)2
is

the inverse of the Cramér-Rao lower bound for θi, given that the other parameters, i.e. the

elements of θ−i, are known. Even if ∆i is large, the identification of θi might be very weak

if ϱi is close to 1. This observation clarifies the difference between the information in the

likelihood about a parameter θi when the other parameters are known, given by ∆i, and the

information about θi when the other parameters are unknown, given by bi. In general, the

second type of information is smaller and the difference increases with the value of ϱi.
1

1The difference between the two types of information about θi can also be seen in terms of the difference
between the expected curvature of the log-likelihood with respect to θi, and the expected curvature of the
profile log-likelihood function of θi. The first is equal to i-th diagonal element of IT , while the second is given
by the inverse of i-th diagonal element of the inverse of IT .
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Example 1. Consider the following ARMA(1,1) model:

xt = ϕ1xt−1 + ϵt − ϕ2ϵt−1, |ϕ1| < 1, |ϕ2| < 1, ϵt ∼ N(0, σ2) (3.7)

For simplicity, assume that σ2 is known. The information matrix for θ := [ϕ1, ϕ2]
′ is

I(θ) =
[

1
1−ϕ21

−1
1−ϕ1ϕ2

−1
1−ϕ1ϕ2

1
1−ϕ22

]
(3.8)

and the diagonal elements of the inverse of I(θ) are:

bi =
(1− ϕ1ϕ2)

2(1− ϕ2
i )

(ϕ1 − ϕ2)2
for i = 1, 2 (3.9)

From (3.9), it is clear that ϕ1 and ϕ2 are not identified if ϕ1 = ϕ2 and that they are weakly

identified when ϕ1 ≈ ϕ2. Furthermore, we can express (3.9) in the form of (3.6) using

∆i = 1/(1−ϕ2
i ) and ϱ2

i = (1−ϕ2
1)(1−ϕ2

2)/(1−ϕ1ϕ2)
2, which shows that the reason for weak

identification is that ϱi ≈ 1 when ϕ1 ≈ ϕ2. This implies that the effects of ϕ1 and ϕ2 on the

likelihood are very similar and the two parameters are difficult to identify separately.

If the model is re-parametrized in terms of ψ := ϕ1 − ϕ2 and ϕ2, we have

bi =
(1− ϕ2

2)(1− ϕ2
2 − ϕ2ψ)

ψ2
(3.10)

Therefore, ϕ2 is unidentified when ψ = 0 and weakly identified when ψ ≈ 0. Again, bi can be

decomposed as in (3.6) using ∆i = ψ2(1 + ψϕ2 + ϕ2
2)/(1 − ϕ2

2)(1 − (ψ + ϕ2)
2)(1 − ψϕ2 − ϕ2

2)

and ϱ2
2 = (ψ + ϕ2)

2(1− ϕ2
2)/ (1− (ϕ2

2 + γϕ2)
2). Now the cause for weak identification is that

∆i ≈ 0 when ψ ≈ 0, which means that the effect of ϕ2 on the likelihood is very weak and

vanishes in the limit.

The problem with identification in the ARMA(1,1) model with near cancelling roots is

well known and the results presented above are not new. In this (and other) simple models

parameter identification problems can be analyzed directly, without the use of the information

matrix. In the much larger and complicated DSGE models, however, this is not feasible since

the relationship between the structural parameters and the reduced form representation is

typically not available in explicit analytical form. Therefore, the information matrix and

the decomposition in (3.6), which can easily be evaluated for such models, could be very

useful tools for detecting problems with identification and understanding the causes for these

problems.
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3.3 Sources of identification

To evaluate the strength of identification of the parameters, we take into account all model-

implied restrictions on the joint probability distribution of the observables. A natural next

step in the analysis is to ask which characteristics of the distribution are most important

for the identification of individual parameters. In principle, one may be able to answer this

question by reasoning alone, i.e. by tracing the link between the economic features represented

by the parameters, and the properties of the data the model is designed to explain. In practice,

however, the relationship between parameters and empirical implications of a model is often

difficult to discern, especially for large models. It is therefore useful to have a formal method

for doing that. In this section, I present two complementary approaches. The first one

uses the first order conditions of the MLE to rank the moments of the observed variables in

terms of their informativeness about the parameters of the model. The second approach uses

the frequency domain approximation of the information matrix to compare the amount of

information about individual parameters contained in different parts of the spectrum.

Most informative moments

The idea, in a nutshell, is this. Since the shocks are Gaussian, the distribution of the ob-

servables is completely characterized by the first and second order moments of the variables.

Under correct model specification, the maximum likelihood estimator uses information con-

tained in these moments efficiently so as to achieve the smallest asymptotic covariance matrix

among all consistent estimators. To rank the moments in terms of their informativeness about

the parameters, we ask how individual moments are weighted by the maximum likelihood es-

timator.

The maximum likelihood estimator is defined as the value of θ that maximizes the log-

likelihood function. Alternatively, it can be interpreted as the value of θ which solves the

system of first order conditions:

∂ℓT (θ)

∂θ′ = 0

To see how moments of xt enter into this system, consider first the case when both the

data and the model are demeaned. In the Appendix it is shown that, when s(θ) = 0, the

state space system (2.2)-(2.3) can be written as follows:

XT = LET (3.11)

whereL is a lower triangular matrix with unity diagonal elements andET :=
[
e′
1|0, e

′
2|1, . . . , e

′
T |T−1

]′
.
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Since ET is jointly Normal with covariance matrix S := diag([S1|0, . . . ,ST |T−1]), we have

XT ∼ N (0,Σ(θ)) , where Σ(θ) = LSL′ (3.12)

Therefore, the log-likelihood function of XT is given by:

ℓT (θ) = const.− 1

2
log detΣ(θ)− 1

2
X ′

TΣ(θ)−1XT (3.13)

Differentiating (3.13) with respect to θi yields:

∂ℓ(θ)

∂θi
=

1

2
vec

(
Σ(θ)−1∂Σ(θ)

∂θi
Σ(θ)−1

)′

vec
(
Σ̂ −Σ(θ)

)
(3.14)

where Σ̂ := XTX
′
T . Rearranging the first term of the product in (3.14) gives:

∂ℓ(θ)

∂θi
= vec

(
∂Σ(θ)

∂θi

)′
1

2

(
Σ(θ)−1 ⊗Σ(θ)−1

)
vec
(
Σ̂ −Σ(θ)

)
(3.15)

This expression for the score is the same as the first order conditions for a GMM estima-

tor with moment conditions given by vec
(
Σ̂ −Σ(θ)

)
= 0 and weighting matrix equal to

1
2
(Σ(θ)−1 ⊗Σ(θ)−1), which can be recognized as the information matrix of vec

(
Σ̂
)

(see

e.g. Magnus and Abadir (2005)). Note that with l observed variables the matrix Σ(θ) is

lT × lT and has LT := l2(T − 1) + l(l + 1)/2 unique elements representing various second

order moments of xt (l(l + 1)/2 covariances and l2(T − 1) autocovariances). If we let mj(θ)

be the j-th element of the LT vector m(θ) collecting these moments, and m̂j
t be the sample

realization of mj(θ) at time t, we can write (3.15) as:

∂ℓ(θ)

∂θi
=

1

2

LT∑
j=1

νij
(
m̂j −mj(θ)

)
(3.16)

where m̂j :=
1

νij

∑
t

νijt m̂
j
t , νij :=

∑
t

νijt , and ν
ij
t is equal to the sum of the elements of

vec
(
∂Σ(θ)
∂θi

)′
(Σ(θ)−1 ⊗Σ(θ)−1) that multiply mj

t .
2

The expression in (3.16) shows that the MLE of the model (3.11) is indeed a moment

matching estimator that minimizes the differences between theoretical second order moments

2Note that due to the symmetry of Σ̂, each off-diagonal element mj
t appears in two positions in the vector

vec
(
Σ̂ −Σ(θ)

)
.
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and their sample counterparts. However, unlike the usual moment matching estimators, the

empirical moments are not simple arithmetic averages, but are weighted averages where each

data point receives a potentially different weight. The size, in absolute value, of the weights

on the differences between empirical and theoretical moments determines how important it

is to set those differences to zero. Since the scale of the moments in m(θ) may be different,

the weights on the moment conditions need to be multiplied by the values of the moments in

order to comparable.3 The relative importance of moment mj for parameter θi is therefore

measured by

ωij =
|νijmj|∑LT

q=1 |νiqmq|
(3.17)

Example 2. A simple model where the weights in the first order conditions of MLE can

be studied analytically is the autoregressive of order one (AR(1)) process,

xt = ρxt−1 + εt, where |ρ| < 1 and εt ∼ N
(
0, σ2

)
(3.18)

The log-likelihood function of XT := [x1, x2, . . . , xT ]
′ can be written as a sequence of

conditional distributions:

ℓ(ρ, σ2) = log (f(x1)f(x2|x1)f(x3|, x2) . . . f(xt|xt−1))

= −T
2
log(2πσ2) +

1

2
log(1− ρ2)− x21

(1− ϕ2)

2σ2
+

1

2σ2

T∑
t=2

(xt − ρxt−1)
2 (3.19)

The first order conditions with respect to ρ and σ2 are:

∂ℓ

∂ρ
= −ρ(T − 2)γ(0)

(
1

T−2

∑T−1
t=2 x

2
t − γ(0)

)
γ(0)

(3.20)

+ρ(T − 1)γ(0)

(
1

T−1

∑T
t=2 xtxt−1 − γ(1)

)
γ(1)

= 0

3Alternatively, the moment conditions could be normalized by the asymptotic standard deviations of the
respective moments. This approach is preferable when some of the moments are zero or very close to zero.
See Iskrev (2014) on how to compute analytically the required standard deviations
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and

∂ℓ

∂σ2
=
(
T + (T − 2)ρ2

)
γ(0)

(
x21+x

2
T+(1+ρ2)

∑T−1
t=2 x2t

T+(T−2)ρ2
− γ(0)

)
γ(0)

(3.21)

−2ρ2(T − 1)γ(0)

(
1

T−1

∑T
t=2 xtxt−1 − γ(1)

)
γ(0)

= 0

where γ(h) := E xtxt−h and I have use the fact that γ(1) = ργ(0). Equations (3.20) and (3.21)

reveal three important features of the maximum likelihood estimator: First, the estimator

picks values of ρ and σ2 which minimize the differences between the theoretical variance

and first order autocovariance of xt and their empirical counterparts. However, the empirical

moments are not arithmetic averages, in which each realization is weighted equally, but instead

are weighted averages of the sample realizations. Note that, in equation (3.20), x21 and x2T
receive zero weights, while in (3.21), their weights are smaller than the weights on xt for

2 ≤ t ≤ T − 1. Secondly, the maximum likelihood estimator does not use information in

autocovariances beyond the first order even though they are available. In other words, the

estimator assigns zero weights on terms such as (xtxt−h−γ(h)) for 2 ≤ h ≤ T −1. Thirdly, in

the first order condition for ρ, the relative weights on the two moment conditions are almost

the same, except for very small values of T . In the first order condition for σ2 the relative

weight on first term is much larger for small values of ρ, and decreases to a half as ρ increases

to 1. This implies that the two moment conditions are equally informative for ρ, while for σ2

matching the empirical and theoretical variances is more important unless the process is very

persistent.

In the general case, when the model and the data are not demeaned, XT = µ(θ) +LET ,

with µ := ιT ⊗ s(θ) and ιT being a T -dimensional vector of ones. The log-likelihood function

of XT is:

ℓ(θ) = const.− 1

2
log detΣ(θ)− 1

2
(XT − µ(θ))′Σ(θ)−1 (XT − µ(θ)) (3.22)

and the score is:

∂ℓ(θ)

∂θi
=
∂µ(θ)

∂θi

′

Σ(θ)−1 (XT − µ(θ)) (3.23)

+ vec

(
∂Σ(θ)

∂θi

)′
1

2

(
Σ(θ)−1 ⊗Σ(θ)−1

)
vec
(
(XT − µ(θ)) (XT − µ(θ))′ −Σ(θ)

)
The expression on the right-hand side of (3.23) can be put in the form of (3.16) with
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two modifications: (1) the vector of moments m(θ) now has LT + l elements, adding the

mean of xt to the second order moments; (2) the sample realizations of the second order

moments are centred by subtracting the elements of µ(θ). Note that this, in addition to the

potentially different weights on the sample realizations, is another difference between MLE

and the standard GMM estimator, which weighs all realizations equally and centres them

using the sample means.

Most informative frequencies

In addition to the time domain analysis, it may be of interest to know what are the sources

of information in the frequency domain. Specifically, which part of the spectrum contains the

most information about any given parameter. To answer this question, I use the fact that the

Gaussian log-likelihood function can be approximated in the frequency domain as:4

ℓ̃T (θ) = const.− 1

T

T−1∑
j=0

log det(F (ωj))−
1

T

T−1∑
j=0

tr
(
F (ωj)

−1F̂ (ωj)
)

− T

2
tr

[
F (0)−1

(
1

T

T∑
t=1

xt − µ

)(
1

T

T∑
t=1

xt − µ

)′]
(3.24)

where F (ω) :=
∑∞

τ=−∞Σ(τ) exp(−iωτ) is the spectral density matrix of xt with Σ(τ) :=

E(xt−s(θ))(xt−τ−s(θ))′, F̂ (ωj) :=
1
T
x(ωj)x̄(ωj)

′ is the periodogram of XT with the overbar

denoting complex conjugation, and x(ωj) :=
∑T

t=1 xt exp(−iωjt), ωj =
2πj
T
, j = 0, . . . , T −1

is the Fourier transform of XT .

Papers estimating dynamic economic models by maximum likelihood in the frequency do-

main include Altug (1989), Diebold et al. (1998), Christiano and Vigfusson (2003). Qu and Tkachenko

(2012a) and Sala (2014) estimate DSGE models using information from different frequency

bands, and find that the parameter estimates and the economic implications of the model

can differ substantially depending on which part of the spectrum is used. Qu and Tkachenko

(2012b) show how to check whether the parameters of a DSGE model are identified from

a subset of frequencies, while Qu (2014) considers identification robust inference in DSGE

models from a frequency domain perspective.

The main argument for estimating a model in the frequency domain is the concern that

the model may be misspecified with respect to certain frequencies. Fitting the model to only a

subset of frequencies, e.g. business cycle frequencies, may alleviate this problem. The purpose

of conducting identification analysis in the frequency domain is different, however. It is to

understand what are the model implications regarding where in the spectrum is information

4See e.g. Hansen and Sargent (2014).
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about different parameters concentrated. In other words, we are interested in the properties

of the model as it is, and not whether it is a good model for explaining a particular data

sample.5

Let ĨT (θ) be the frequency domain approximation of the FIM, defined as in (2.7) with

ℓ̃T (θ) instead of ℓT (θ). Then the (u, v)-th element of Ĩ(θ)T is given by6

{ĨT (θ)}u,v =
T

2π
tr

(
F (0)−1

(
∂s(θ)

∂θu

)(
∂s(θ)

∂θv

)′)
+

1

2

T−1∑
j=0

tr

(
F (ωj)

−1∂F (ωj)

∂θu
F (ωj)

−1∂F (ωj)

∂θv

)
(3.25)

The Appendix provides some details on how to evaluate that matrix for DSGE models.

Note that both the log-likelihood (3.24) and the information matrix (3.25) are constructed

by summing up terms which are independent across frequencies. Therefore, to evaluate the

amount of information within a band of frequencies, one has to include the terms correspond-

ing to these frequencies and omit the ones outside the band. As before, CRLBs for that

set of frequencies are be obtained by inverting the resulting information matrix. The most

informative part of the spectrum for a parameter is the one yielding the smallest value of the

bound for that parameter.7

4 Application: Identification analysis of the Smets and

Wouters (2007) model

In this section, I illustrate the identification analysis framework discussed above using a

medium-scale DSGE model estimated in Smets and Wouters (2007) (SW07 henceforth). I

start with an outline of the main components of the model, and then turn to the identification

of the parameters.

5To help clarify this point, consider again the simple AR(1) process. It is easy to see that, the more
persistent the process, the more volatility and therefore information there is in the low frequencies. This is a
property of the AR(1) process irrespectively of whether it is a good description of any given sample of data.

6A classic reference on the frequency domain approximation of the FIM is Whittle (1953), who considers
a large T approximation of the matrix for processes with zero mean. An extension of Whittle’s formula
to processes with non-zero mean is provided by Zeira and Nehorai (1990). See also Davies (1983) and the
references therein.

7Alternatively, evaluating ĨT (θ) for a large T yields an approximation of the asymptotic covariance matrix
for MLE using the full spectrum. Summing over subsets of frequencies and inverting the corresponding
matrices gives the asymptotic variances of the parameters. Comparing either the CRLBs or the asymptotic
variances results in the same conclusions regarding the most informative parts of the spectrum.
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4.1 The model

The model, based on the work of Smets and Wouters (2003) and Christiano et al. (2005), is

an extension of the standard RBC model featuring a number of nominal frictions and real

rigidities. These include monopolistic competition in goods and labor markets, sticky prices

and wages, partial indexation of prices and wages, investments adjustment costs, habit per-

sistence and variable capacity utilization. The endogenous variables in the model, expressed

as log-deviations from the steady state, are output (yt), consumption (ct), investment (it),

utilized and installed capital (kst , kt), capacity utilization (zt), rental rate of capital (rkt ), To-

bin’s q (qt), price and wage mark-up (µpt , µ
w
t ), inflation rate(πt), real wage (wt), total hours

worked (lt), and nominal interest rate (rt). The log-linearized equilibrium conditions for these

variables are presented in Table A.1 in the Appendix. The last equation in the table gives the

policy rule followed by the central bank, which sets the nominal interest rate in response to

inflation and the deviation of output from its potential level. To determine potential output,

defined as the level of output that would prevail in the absence of the price and wage mark-

up shocks, the set of equations in Table A.1 is extended with their flexible price and wage

version (see Table A.2 in the Appendix). The model has seven exogenous shocks. Five of

them - total factor productivity, investment-specific technology, government purchases, risk

premium, and monetary policy - follow AR(1) processes. The remaining two shocks - wage

and price mark-up - follow ARMA(1, 1) processes. The model is estimated using data on

seven variables: output growth, consumption growth, investment growth, real wage growth,

inflation, hours worked and the nominal interest rate. Thus, the vector of observables is

xt = [yt − yt−1, ct − ct−1, it − it−1, wt − wt−1, πt, lt, rt, ]
′ (4.1)

and the constant term in the measurement equation (2.2) is given by:

s(θ) =
[
γ̄, γ̄, γ̄, γ̄, π̄, l̄, r̄

]′
(4.2)

where γ̄ is the growth rate of output, consumption, investment and wages, π̄ is the steady

state rate of inflation, l̄ is the steady state level of hours worked and r̄ is the steady state

nominal interest rate. Since there is no measurement error, the last term in (2.2) is omitted.

18



The deep parameters of the model are collected in a 41-dimensional vector θ given by:8

θ = [δ, λw, gy, εp, εw, ρga, β, µw, µp, α, ψ, φ, σc, λ,Φ, ιw, ξw, ιp, ξp, σl,

rπ, r△y, ry, ρ, ρa, ρb, ρg, ρI , ρr, ρp, ρw, γ, σa, σb, σg, σI , σr, σp, σw, π̄, l̄]
′ (4.3)

The definitions of the parameters are shown in Table A.3 in the Appendix.

4.2 Identification Analysis

The identifiability of the parameters in the SW07 model was studied in Iskrev (2010). There,

it was found that 37 of the 41 parameters in (4.3) are locally identified. The remaining four

parameters - ξw, ξp, ϵw andϵp, are not separately identifiable in the sense that, in the linearized

model, ξw cannot be distinguished from ϵw, and ξp cannot be distinguished from ϵp. As in

SW2007, in what follows I assume that ϵw and ϵp, as well as λw, δ and gy, are known. This

leaves 36 parameters whose identification will be analyzed. Details on the identification of all

39 identifiable parameters are presented in the Appendix.

4.2.1 Identification strength

The strength of identification of the free parameters in θ is measured using the expected

information matrix evaluated at the posterior mean reported in SW07 (see Table A.3) for

T = 156, the sample size in SW07. The results are presented in panel A of Table 1, which

has three columns. The first column, labeled “CRLB”, shows the values of the Cramér-Rao

lower bounds. The other two columns, labeled “Lb.” and “Ub.”, show the lower and upper

bounds of one-standard deviation intervals around the posterior mean.

An examination of the values in the table shows that, among the structural parameters,

as relatively weakly identified stand out the steady states of hours worked and inflation (l̄ and

π̄), the discount factor (β), the elasticity of labor supply (σl), the price and wage indexation

coefficients (ιp and ιw), the response to output gap in the monetary policy rule (ry), and

the investment adjustment cost parameter (φ). Among the structural shock parameters, the

worst identified are the persistence coefficients of the monetary policy shock (ρr) and the risk

premium shock (ρb). The best identified structural parameters are the steady state growth

rate (γ), the interest rate smoothing coefficient (ρ), and the fixed cost in production parameter

(Φ). Among the shock parameters the best identified are the government spending shock (ρg

and σg), the productivity shock (ρa and σa), the persistence coefficients of the wage and price

8Note that, by definition, γ̄ = 100(γ − 1), and r̄ is determined from the values of β, σc, γ and π̄ from

r̄ = 100( π̄γ
σc

β − 1).
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mark-up shocks (ρw and ρp), and the standard deviation of the monetary policy shock (σr).

Table 1: Identification strength at the posterior mean

param. A. Cramér-Rao B. Monte Carlo C. Posterior

CRLB Lb. Ub Std. Lb. Ub. Std. Lb. Ub.

φ 1.878 3.866 7.622 1.728 4.016 7.472 1.029 4.715 6.773
σc 0.177 1.203 1.558 0.174 1.206 1.554 0.131 1.249 1.511
λ 0.059 0.655 0.773 0.061 0.653 0.775 0.042 0.672 0.755
ξw 0.078 0.623 0.778 0.075 0.626 0.776 0.071 0.630 0.771
σl 0.986 0.850 2.823 1.043 0.793 2.880 0.619 1.218 2.455
ξp 0.057 0.593 0.707 0.061 0.589 0.711 0.058 0.592 0.709
ιw 0.206 0.383 0.795 0.186 0.403 0.775 0.133 0.456 0.722
ιp 0.131 0.113 0.375 0.121 0.122 0.365 0.092 0.152 0.336
ψ 0.144 0.403 0.690 0.153 0.394 0.699 0.115 0.431 0.662
Φ 0.117 1.487 1.722 0.129 1.476 1.733 0.078 1.527 1.682
rπ 0.386 1.659 2.431 0.391 1.655 2.436 0.181 1.864 2.227
ρ 0.041 0.767 0.849 0.038 0.770 0.846 0.024 0.784 0.833
ry 0.038 0.050 0.125 0.040 0.048 0.127 0.022 0.065 0.110
r△y 0.043 0.181 0.266 0.045 0.179 0.268 0.027 0.196 0.251
π̄ 0.227 0.558 1.012 0.199 0.586 0.984 0.098 0.688 0.883

100
(
β−1 − 1

)
0.125 0.041 0.291 0.114 0.052 0.280 0.060 0.106 0.227

l̄ 1.486 -0.945 2.028 1.212 -0.670 1.753 0.605 -0.064 1.147
γ 0.010 0.421 0.441 0.016 0.415 0.447 0.014 0.417 0.445
α 0.019 0.172 0.209 0.018 0.173 0.209 0.018 0.173 0.208
ρa 0.014 0.944 0.971 0.027 0.931 0.984 0.010 0.948 0.968
ρb 0.088 0.128 0.305 0.089 0.128 0.306 0.084 0.133 0.301
ρg 0.010 0.966 0.987 0.022 0.955 0.998 0.008 0.968 0.985
ρI 0.065 0.646 0.776 0.064 0.646 0.775 0.059 0.652 0.770
ρr 0.092 0.059 0.244 0.088 0.063 0.240 0.065 0.086 0.217
ρp 0.058 0.833 0.950 0.078 0.813 0.970 0.047 0.845 0.938
ρw 0.014 0.954 0.983 0.040 0.928 1.008 0.013 0.955 0.981
ρga 0.100 0.422 0.621 0.102 0.419 0.623 0.089 0.432 0.610
µp 0.148 0.551 0.847 0.160 0.539 0.858 0.087 0.612 0.786
µw 0.059 0.782 0.901 0.076 0.766 0.917 0.051 0.790 0.893
σa 0.032 0.427 0.492 0.033 0.426 0.493 0.028 0.432 0.487
σb 0.026 0.214 0.267 0.025 0.215 0.266 0.023 0.217 0.264
σg 0.033 0.496 0.562 0.032 0.497 0.561 0.030 0.499 0.559
σI 0.049 0.404 0.502 0.052 0.401 0.505 0.048 0.405 0.502
σr 0.016 0.230 0.261 0.016 0.229 0.261 0.015 0.231 0.260
σp 0.022 0.118 0.162 0.021 0.119 0.161 0.017 0.123 0.157
σw 0.027 0.217 0.272 0.028 0.216 0.272 0.022 0.222 0.266

Note: CRLB in panel A shows the values of the Cramér-Rao lower bounds on the standard deviations of
unbiased estimators. In panel B it is the standard deviation of the ML estimator obtained using Monte Carlo
simulations with 1000 samples. In panel C it is the standard deviation of the posterior distribution. Lb. and
Ub are the endpoints of one Std. intervals around the posterior mean.

The values in panel A of Table 1 are theoretical bounds on the sampling uncertainty and

one-standard deviation intervals. In principle, the actual standard deviations and intervals

could be larger. However, even in frequentist estimation of structural models, there are prior

restrictions on the values of the parameters, which are ignored in the calculations of the in-

formation matrix and the corresponding Cramér-Rao (CR) lower bounds.9 Consequently, the

theoretical bounds may be greater than the actual values. To get a sense of how accurate

9In addition to the constraints implied by the economic meaning of some preference and technology pa-
rameters, there are also implicit restrictions on the values of some parameters implied by the assumption that
the model has an unique solution.
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the information matrix approach is in predicting the actual sampling uncertainty, I conduct

a Monte Carlo (MC) simulation study where the free parameters in the model are estimated

by MLE on 1000 samples with length T = 156 generated by the SW07 model with the values

shown in Table A.3. The MC estimates of the standard deviations and the corresponding

endpoints of the one-standard deviation intervals are presented in panel B of Table 1. Com-

paring the standard deviations with the theoretical lower bounds shows that the two are very

similar for most parameter and, with a few exceptions, the CR values are smaller than the

MC standard deviations. In the case of α, β and ρ, the exceptions can be explained with the

a priori restrictions on these parameters being theoretically bounded between 0 and 1. In

the case of l̄ and π̄, both of which are quite poorly identified, the MC standard deviations

are smaller partly because of the restrictions on other parameters related to the steady state,

particularly β, and partly because of the bounds imposed on these parameters in the simu-

lations.10 For several parameters, namely the autoregressive coefficients ρa, ρg and ρw, the

MC standard deviations are significantly larger, by a factor of 2, than the CR bounds. This

result can be explained by the fact that the true values of these parameters are close to the

upper bound of 1, which introduces negative skewness in their MC distributions. As a result,

the actual variances are larger than the ones implied by the local shapes of the distributions

around the modes. If we impose symmetry and discard the values below the respective lower

bounds (0.92 for ρa, 0.95 for ρg and 0.94 for ρw), the MC variances for the three parameters

become very close to their theoretical lower bounds. These three parameters, together with

γ, ρp and µw, for which the MC standard deviations exceed the CR bounds by between 25%

and 50%, and π̄ and l̄, for which the CR bounds a larger by 16% and 24%, respectively,

are the ones with the largest discrepancies between the MC standard deviations and the CR

bounds. For the remaining 28 parameters, the difference between the MC standard deviations

and the CR bounds is on average less than 1% and does not exceed 10% in either direction.

The conclusion therefore is that, by and large, the measure of identification strength based

on the expected information matrix provides an accurate indication of the actual sampling

uncertainty of the ML estimator.

The last panel C of Table 1 shows the standard deviations of the posterior distribution of

the parameters and the corresponding one-standard deviation intervals around the posterior

mean. Although conceptually very different, comparing the Bayesian and frequentist intervals

gives some idea about the contribution of the prior information in the estimation of the

parameters. The Bayesian standard deviations are always smaller than the MC ones, on

average by 53%. The largest differences are with respect to ρa, ρg and ρw - the same three

parameters for which the MC standard deviations are largest relative to the CR lower bounds.

10The results in Table 1 were obtained assuming that both l̄ and π̄ are restricted between -20 and 20.
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Among the structural parameters, the prior information plays a relatively large role with

respect to rπ, µp, β and ry, for which the differences between the Bayesian and MC standard

deviations exceed 90%. The posterior and MC standard deviations are closes for ξp, α and

ξw, among the structural parameters, and σI , σb, σg and σr, among the shock parameters.

For these parameters, the MC standard deviations are at most 10% larger than the Bayesian

ones.

Measuring the strength of identification on the basis of either the posterior or the MC

standard deviations results in almost identical rankings of the parameters, in terms of their

relative strength of identification, as when the CR bounds are used. This is not surprising

given how similar the estimated Bayesian and MC standard deviations are to the theoretical

lower bounds. At the same time, the use of prior information considerably improves the

strength of identification of most parameters, and particularly that of l̄, π̄, rπ, β, and φ,

whose posterior standard deviations are much smaller than MC standard deviations or the

CR bounds.

As discussed in Section 3.2, the CR bound for a parameter θi is a product of two terms,

the first of which depends on the sensitivity of the log-likelihood with respect to θi, and

the second is related to the collinearity between the derivative of the log-likelihood with

respect to θi and the derivatives with respect to the other free parameters. The sensitivity

and collinearity factors in the decomposition are shown in Table 2 under the labels “sens.”

and “coll.”, respectively, alongside the values of the CR bounds. To interpret the numbers, it

helps to reiterate that the sensitivity factor for a parameter shows the value of the conditional

CR bound, i.e. the bound when all other parameters are known and there is no collinearity.

The collinearity factor shows how much larger is the bound when the other parameters are

unknown. The results indicate that both factors could play important roles in determining the

strength of identification. Parameters such as ρg, ρa, ρw, γ, σg and σr are very well identified

because both the sensitivity and collinearity factors are small, meaning that each one of these

parameters affects the log-likelihood in a strong and distinct way.11 The opposite is true

for parameters such as ρb, rw, ιp and σl. In the case of β and especially l̄, identification is

weak mostly because of the relatively high sensitivity factors, meaning that these parameters

have a very weak effect on the log-likelihood function.12 Large collinearity values significantly

worsen the identification of parameters like µp, ξw, ρp, µw, and rπ. However, these effects

are to some extent offset by small values of the sensitivity component which renders the

overall strength of identification of these parameters relatively strong. In other words, these

11Note that, unlike the collinearity measure which is independent of the scale of the parameters, the sensi-
tivity measure should be compared relative to the parameter values.

12Note that l̄ affects the log-likelihood only through the mean of hours worked.
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are parameters whose effects on the log-likelihood are quite strong but at the same time are

not very distinct from the effects of other free parameters. For instance, in the case of µp,

which is the MA coefficient of the price mark-up shock, the collinearity factor is around 6.4

which corresponds to a correlation coefficient ϱi = 0.988, as can be seen from the fifth column

in the table. In addition to the overall collinearity measure, one could compute correlation

coefficients with respect to smaller sets of parameters and thus determine which ones among

the remaining 35 free parameters most closely match the effect of µp on the log-likelihood.

The largest correlation coefficients for groups of one to four parameters are shown in Table

2 under the labels “ϱi(n)”, for 1 ≤ n ≤ 4. In the case of µp, the largest pairwise correlation

coefficient is .963 with respect to the AR coefficient of the price mark-up shock ρp. Larger

groups of parameters most collinear with µp include other price stickiness related parameters,

namely σp and ιp as well as the MA coefficient of the wage mark-up shock µw. Interestingly,

even though the collinearity value for µw is also high, the largest pairwise correlation is with

respect to the wage stickiness parameter, ξw, and not the AR coefficient of the wage mark-up

shock. A larger group of functionally similar parameters to µw includes also the volatility of

the wage mark-up shock σw, the response coefficient to inflation in the policy rule rπ and the

elasticity of labor supply σl. Another result worth pointing out has to do with the question

of whether it is possible to distinguish between monetary policy inertia and persistence in the

monetary policy shock. This question can be answered by considering the correlation between

the parameters ρ and ρr, which can be seen in Table 2 to be 0.46. Indeed, ρ is the parameter

most similar to ρr in the way it affects the log-likelihood. However, the effects are far from

identical and, as can also be seen in the table, the parameters most similar to ρ are other

structural policy rule parameters, like rπ and ry, as well as the elasticity of intertemporal

substitution σc.
13

Before concluding this section, it is worth briefly describing the main consequences of

having three additional free parameters, namely λw, δ and gy. As can be expected, the identi-

fication of most parameters is weaker due to the higher collinearity values compared to when

the three parameters are fixed. By far, the worst affected is the price stickiness parameter

ξw, whose CR bound is 2.43 times larger. The elasticity of intertemporal substitution σc,

the discount factor β, the investment adjustment cost parameter φ, capacity utilization cost

parameter ψ, the capital share α, fixed cost in production Φ, and the AR coefficient of the

productivity shock ρa are all also strongly affected. For these parameters, the CR bounds

are between 15 % and 66 % larger. Several parameters, such as γ, l̄ and π̄ are completely

unaffected. More details are provided in Table A.6 in the Appendix, which, in addition to the

13Of course, this result applies only to the full information DSGE setting and says nothing about the
identification of the parameters in a single equation setting.
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CR bounds for all parameters, also shows the sensitivity and collinearity factors as well as

the largest correlation coefficients for groups of one to four parameters. As can be seen there,

the striking increase in the CR bound for ξw is due to the very large pairwise correlation of

0.95 of that parameter and λw. The two parameters are therefore difficult to distinguish on

the basis of the log-likelihood, which would explain why λw was fixed in the first place.

4.2.2 Sources of identification

The ML estimator identifies the model parameters using information from first and second

order moments of the data. With 156 observations on seven variables, there are 7630 such

moments. This section determines which among them are the most informative moments for

each parameter. As discussed in Section 3.3, the analysis is based on the weights assigned to

moments in the first order conditions of the estimator.14 The properties of the ML estimator

imply that the weights are optimal in the sense that the information contained in the moments

is used efficiently to obtain the most precise estimates possible.

The available first and second order moments are sorted according to the values of ωij,

defined in (3.17), and the results for the first seven moments with largest weights for each

parameter are shown in Table 3. In the case of the steady state parameters π̄ and l̄, the seven

first order moments account for all of the weight.15 A significant portion of the weight, 85%

or more, is assigned to the first seven moments also for σa, ρga, σg, γ, ψ, and α. However,

for the parameters ρg, ρb, σc and ρI , only 50% or less of the weight is accounted for by the

moments shown in the table. In any case, moments which are not shown receive very small

weights individually and are therefore of no particular interest here.

The mean of inflation alone is very important for π̄ and l̄, where it accounts for 50% or more

of the total weight. The mean of the interest rate is also very important for these parameters.

These two moments are also very informative with respect to β, accounting together for about

50% of the total weight. Another parameter with a large amount of weight distributed among

first order moments is γ, for which the mean of consumption is the most important, while the

means of wages, interest rate, output and investment receive approximately the same weight.

The only other parameter for which first order moments are relatively important is σc, with a

4% weight on the mean of the interest rate. For the remaining parameters, only second order

moments receive significant weights. The variance and first order autocovariance of hours, in

particular, are the most important moments for more than a third of the parameters. In the

case of α, ψ, ρa, ρga, σa, and σg, these two moments alone account for more than 50% of the

14More precisely, the weights are on the relative differences between empirical and theoretical moments.
See equation (3.16).

15In the case of π̄ the total weight exceeds 1 due to rounding.
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total weight. The variance and first order autocovariance of inflation are also important for

a large number of parameters, and especially for ξw, ρw, µw, σw, and σπ. The variances and

first order autocovariances of investment and the interest rate receive large weights in the first

order conditions for the investment specific and interest rate shock parameters, respectively.

Second order moments of the other three variables - output, consumption and wages - on

their own are important in a few cases. The variance of wages is relatively important for

σw, while the variances of output and consumption are important for σg and ρg, respectively.

Individual cross moments receive large weights, 10% or more in several cases. The covariance

of inflation and hours is very important for ιw, Φ, ρy, ξp, ρp, µp, and σp. The covariance of

the interest rate and inflation is important for ρ and rπ, while the covariance of investment

and output is important for ρg.

It is interesting to compare the weights assigned by the ML estimator with the weights in

the first order conditions of a GMM estimator with optimal weighting matrix (see Iskrev (2014)

on how to compute the optimal weighting matrix for Gaussian DSGE models). Table A.4 in

the Appendix shows the GMM weights when moments up to the first order autocovariances

are used, i.e. 84 first and second order moments in total. Again, the first seven moments with

largest weights for each parameter are shown. Comparing with the results in Table 3 shows

that, with a few exceptions, the two estimators select as most important virtually the same

sets of moments. There are relatively large differences in the cases of ιw and γ, and smaller

ones with respect to rπ, ιp and ρI . In the case of ιw, GMM assigns relatively more weight to

the variance and autocovariance of ht, instead of the same moments of πt. With respect to γ,

the mean of ct is less important and that of wt - more important, for the GMM than for the

ML estimator. There are also some differences between the two estimators in the ordering

and weights placed on different moments. However, considering the fact that MLE uses many

more moments and the very different approaches for computing the weights, the consistency

between the results in the two tables is remarkable.

Some comments regarding the importance of moments of hours worked are in order. Firstly,

note that in the first order conditions for l̄, the mean of ht receives a much smaller weight

than the means of πt and rt, even though l̄ in the model is equal to E(ht). This is due to two

reasons. First, the model implies that the sample means of πt and rt are correlated with the

estimate of E(ht).
16 As a result, E(πt) and E(rt) receive non-zero weights in the first order

conditions for l̄, even though the derivatives of these two moments with respect to l̄ are zero.

Second, the model implies that the variance of the estimate of E(ht) is much larger than the

variances of the estimates of E(πt) and E(rt). Relative to the value of the mean, the variance

16This can be seen from matrix Σ in (3.23) which is the asymptotic covariance matrix of µ.
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for ht is around 4, while for πt and rt, the ratios are around 0.07 and 0.04. Consequently,

both the ML and GMM estimators place a much smaller weight on the deviation between

sample and theoretical mean of ht than on the deviations for the other two variables.

As with the sample mean, the model-implied variances of the sample second order moments

of ht are much larger than the variances of moments of the other variables. For example,

relative to the true value of the variance of ht, the variance of its sample estimate is around

2.17 Among the other six variables, investment has the largest relative variance of around 0.17.

Yet, second order moments of ht, and in particular its variance, receive large weights in the

first order conditions of the ML and GMM estimators. The precise reason for this is difficult

to ascertain since, in addition to the variances, the first order condition weights depend in a

complex way on the full correlation structure of the sample second order moments, as well as

on the derivatives of the moments with respect to the structural parameters. The effect of the

correlations among moments on the weights can be seen by comparing the results in Table 3

with those in Table A.5 in the Appendix, which shows the weights when the optimal weighting

matrix is replaced by a diagonal matrix with the inverses of the variances of the moments on

its main diagonal. This leads to some significant changes. In many cases, the moments with

largest weights are different from the ones in Table 3. Note, however, that except the few

parameters for which first order moments are very important, in all other cases, the largest

weights are very small. This means that, now, many more moments, mostly autocovariances

at different lags, receive nearly the same weights. From an estimation point of view, this

is inefficient since such moments contribute relatively little independent information due to

the strong collinearities among them. For l̄ and the other steady state-related parameters,

the concentration of weight occurs because very few moments, mostly means, are affected by

these parameters. Naturally, for l̄, all weight is on E(ht), while for π̄ the weight on E(rt) is

larger than the weight on E(πt) because of the smaller variance of the sample mean of rt.

Next, I examine the sources of identification from a frequency domain perspective. As

explained earlier, I use the frequency domain approximation of the Fisher information matrix

to compute Cramér-Rao bounds based on information from different subsets of frequencies.18

The frequency band yielding the lowest bound for a given parameter is the most informa-

tive part of the spectrum for that parameter. Three non-overlapping frequency bands are

considered: low frequencies (with period from 32 quarters to infinity), business cycle (BC)

frequencies (with period from 6 to 32 quarters), and high frequencies (with period between

17To be clear, I am comparing var(m̂)/m where m is the moment, m̂ is the sample estimate and var(.) is
its asymptotic variance.

18To assess how good the approximation is, I compared the values of the frequency domain approximate
Cramér-Rao bounds to their exact counterparts for different sample sizes. As can be seen from figure A.1 the
frequency domain approximation is very accurate even for small sample sizes.
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2 and 6 quarters). Before turning to the results, it should be pointed out that several pa-

rameters are not identified when information from frequency zero is not used. To address

this, I fix three parameters - π̄, l̄ and γ.19 Table 4 reports the Cramér-Rao bounds for each

frequency band relative to the Cramér-Rao bounds from the full spectrum. On the basis of

these ratios we can both determine the most informative parts of the spectrum and assess the

loss of information when some frequencies are not used. Also, in addition to the bounds, the

table shows the relative values of the two terms in the right hand side of the decomposition in

equation (3.6), i.e the sensitivity and collinearity factors for the respective band of frequencies

relative to the same factors with all frequencies. The decomposition helps to understand why

a particular frequency band is most informative for a given parameter. Intuitively, one might

expect that the most informative part of the spectrum for a parameter will be the one in

which the parameter is very important, in the sense of having a very strong impact on the

properties of the model in those frequencies. For example, parameters that determine the per-

sistence of the shocks have stronger effect in the lower part of the spectrum when the process

is very persistent. Thus, we may expect the low frequencies to be most informative about the

autoregressive coefficients. The results in Table 4 show that this intuition is mostly correct.

The autoregressive coefficients of the very persistent shocks (ρa, ρg, ρp and ρw, see Table A.3)

have the strongest effects and are best identified from the low frequencies, while the much

less persistent shocks parameter ρb is best identified from the high frequencies. Also, the

coefficient of the not very persistent monetary policy shock, ρr, is much better identified in

the high than in the low frequencies. The autoregressive coefficient of the investment specific

shock, ρI , which falls somewhere in between in terms of persistence, has the strongest effect

and is best identified in the BC frequencies. Overall, in most cases, the part of the spectrum

with the smallest CRLBs is the one where the sensitivity component is also smallest.20 In

total, the low frequency are most informative for 11 parameters21, the BC frequencies - for

24 parameters, and the high frequencies - for 1 parameter. Finally, the results reveal that,

even when the most informative part of the spectrum is used, there is a significant loss of

information compared to using the full spectrum. The smallest losses are between 30% and

40% in the cases of ρg, ρw and ρa. For many parameters the frequency band CRLBs are

several times larger than the full spectrum ones.

19As shown in Iskrev (2010), γ, δ, β, ϕ, and λ are not simultaneously identifiable without the mean, i.e.
frequency zero. Fixing one of them renders the four parameters identifiable. π̄, l̄ are clearly not identified
without first order moments.

20In the case of the discount factor β, which, as one might expect, is best identified in the low frequencies,
the relative sensitivity component in the low frequency band is shown to be 1 due to rounding. To be precise,
it is equal to 1.034 meaning that β has some effect on the BC and high frequencies, but the effect is very
weak.

21This includes the three fixed parameters which cannot be identified without frequency 0.
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Table 4: CRLBs in the frequency domain

low BC high

φ 6.6 = 2.7 × 2.5 1.7 = 1.6 × 1.1 3.4 = 1.5 × 2.3
σc 2.1 = 1.4 × 1.4 1.7 = 1.6 × 1.1 7.1 = 3.0 × 2.4
λ 2.6 = 1.9 × 1.4 1.8 = 1.4 × 1.3 4.9 = 2.1 × 2.3
ξw 4.8 = 1.8 × 2.6 1.5 = 1.4 × 1.1 3.1 = 2.3 × 1.3
σl 2.5 = 1.9 × 1.3 1.6 = 1.4 × 1.2 3.8 = 2.3 × 1.7
ξp 9.3 = 2.0 × 4.7 1.8 = 1.4 × 1.3 5.2 = 2.1 × 2.4
ιw 10.0 = 7.8 × 1.3 1.6 = 1.4 × 1.2 3.0 = 1.5 × 2.0
ιp 23.8 = 3.4 × 6.9 1.5 = 1.2 × 1.3 3.5 = 2.3 × 1.6
ψ 2.0 = 1.5 × 1.3 2.0 = 1.7 × 1.2 4.9 = 2.2 × 2.2
Φ 2.1 = 2.2 × 0.9 1.7 = 1.4 × 1.2 5.8 = 1.9 × 3.0
rπ 2.1 = 1.5 × 1.4 1.6 = 1.5 × 1.0 5.4 = 2.6 × 2.1
ρ 3.1 = 2.0 × 1.6 1.5 = 1.4 × 1.1 4.4 = 2.2 × 2.0
ry 2.0 = 1.2 × 1.7 2.0 = 2.2 × 0.9 8.7 = 4.1 × 2.1
r△y 4.4 = 2.6 × 1.7 1.6 = 1.4 × 1.1 2.6 = 1.7 × 1.5
π̄ fixed fixed fixed
β 1.5 = 1.0 × 1.5 13.1 = 4.4 × 3.0 43.8 = 9.0 × 4.8
l̄ fixed fixed fixed
γ fixed fixed fixed
α 2.8 = 1.8 × 1.5 4.4 = 1.4 × 3.2 15.7 = 2.5 × 6.3
ρa 1.4 = 1.2 × 1.2 3.0 = 2.3 × 1.3 13.5 = 4.4 × 3.0
ρb 77.0 = 2.5 × 31.3 1.9 = 1.2 × 1.6 2.9 = 2.7 × 1.1
ρg 1.3 = 1.1 × 1.2 3.0 = 2.6 × 1.2 9.8 = 4.4 × 2.2
ρI 11.7 = 1.8 × 6.5 1.6 = 1.4 × 1.2 9.6 = 2.3 × 4.1
ρr 18.2 = 2.8 × 6.5 1.9 = 1.5 × 1.3 2.4 = 1.5 × 1.6
ρp 2.5 = 1.6 × 1.6 3.9 = 1.5 × 2.6 12.3 = 2.6 × 4.8
ρw 1.4 = 1.3 × 1.1 2.8 = 1.9 × 1.5 9.8 = 2.9 × 3.4
ρga 4.3 = 4.3 × 1.0 1.6 = 1.5 × 1.1 2.3 = 1.4 × 1.6
µp 24.6 = 2.3 × 10.5 2.4 = 1.2 × 1.9 6.4 = 2.4 × 2.6
µw 11.0 = 2.0 × 5.6 1.6 = 1.3 × 1.2 5.8 = 2.5 × 2.3
σa 4.5 = 4.4 × 1.0 1.9 = 1.5 × 1.2 5.9 = 1.4 × 4.2
σb 150.7 = 4.4 × 34.2 2.4 = 1.5 × 1.6 2.3 = 1.4 × 1.7
σg 4.2 = 4.2 × 1.0 1.6 = 1.5 × 1.1 1.9 = 1.4 × 1.3
σI 28.4 = 4.4 × 6.4 1.9 = 1.5 × 1.2 5.9 = 1.4 × 4.2
σr 30.5 = 4.2 × 7.2 1.7 = 1.5 × 1.2 2.6 = 1.4 × 1.9
σp 108.5 = 4.4 × 24.7 1.8 = 1.5 × 1.2 5.0 = 1.4 × 3.6
σw 34.1 = 4.2 × 8.2 1.9 = 1.5 × 1.3 2.7 = 1.4 × 1.9

Note: The CRLBs are decomposed as (see equation (3.6))

CRLB(θi) = CRLB(θi|θ−i)× (1/
√

1− ϱ2
i )

where the first terms on the right-hand side is the value of the bound when all other parameters are
known. The table shows the ratio of each term for the particular frequency band relative to its value
using the full spectrum. The frequency bands are: [0, π/16) (low), [π/16, π/3] (business cycle - BC),
(π/3, π] (high), and [0, π] (all). Note that π̄, l̄ and γ are identified only when frequency zero is included.

4.2.3 Extensions

In this section, I consider three extensions to the identification analysis of the SW07 model.

In particular, I study the effects of changing parameter values, of using different observables,

and of changing the sample size on the strength of identification. To make the comparison

with the earlier results easier, I keep the values of all free parameters fixed. Thus, in the

first exercise, I change the value of one of the calibrated parameters - the steady state wage

mark-up λw. In the second exercise, I assume that data on inflation expectations Et(πt+1)

is available and sequentially replace each one of the original observables with it, keeping the
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original parameter values. In the third, the parameter values and the set of observables are

as before and the sample size T is varied. The purpose of these extensions is to show how

identification is affected by the sample size, the choice of observable variables and the value

at which λw is fixed. At the same time, it should be noted that if the model were to be

estimated under these conditions, the point estimates would also change.

The effect of increasing and decreasing the value of λw, from 1.5 to 1.8 and 1.2 respectively,

on the identification strength is measured with the change in the Cramér-Rao lower bounds

of the free parameters. The results are presented in panel A of Table 5, which shows the

bounds relative to their values at the original parameterization. As can be seen, the strength

of identification of nearly all parameters is affected, although to different degrees and in

different directions. The most affected parameters are π̄ l̄, whose CR bounds change by

about 40% when λw is changed in either direction. ρw, ξw and σl, whose bounds change

by about 30% when λw is decreased from 1.5 to 1.2, are also strongly affected. In all cases,

decreasing the value of λw has the opposite effect on the CR bounds from that of increasing it.

Relatively more parameters are better identified when λw is smaller and the effect on them is

stronger than the effect on the parameters whose identification is weaker with the lower value

of λw.

Panel B of Table 5 shows the effect on the CR bounds of replacing variables from the

original set of observables with inflation expectations. Again, the ratios of the new to the

original bounds are presented. Since l̄ is not identified when ht is not observed, that variable is

always included. Several results are worth highlighting. First, neither one of the seven possible

sets of observables (including the original one) dominates in the sense of giving the lowest CR

bounds for all parameters. For 23 of the 36 parameters the best set of observables is the one

where consumption is replaced with inflation expectations, i.e. observing yt, It, wt, ht, πt, rt

and Et(πt+1). That set of variables is also best in terms of overall strength of identification,

as measured by the geometric average of the CR bounds. Second, the parameters whose

identification improves the most from observing Et(πt+1) instead of ct are µp, ρp, ιp, ρr, and ρ,

whose CR bounds are 70% or more smaller, compared to their original values. However, for

other parameters, such as σb, σc, ρga, and α, the CR bounds increase as a result of replacing

ct with Et(πt+1). Third, as might be expected, replacing πt with Et(πt+1) has a relatively

small effect on the strength of identification of most parameters. Several of them, such as σp,

ιp, ιw and σw are identified much worse, while others - ρp, rπ, ry, π̄, µw and ρw - are better

identified when Et(πt+1) is observed instead of πt.

The last exercise considers the effect of changing the sample size T on the strength of

identification. Naturally, more data means more information and therefore more precise
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Table 5: Effect of changing the value of λw, the set of observables, and the sample size

A. Value of λw B. Variable replaced with E(π) C. Rate of convergence
param. λw = 1.2 λw = 1.8 r π w I c y

φ 1.08 0.94 0.96 0.99 0.96 1.67 0.98 0.94 b = 0.50
σc 0.89 1.07 1.08 1.00 0.99 0.88 1.25 0.98 b = 0.51
λ 1.05 0.92 1.04 1.00 0.98 0.80 1.01 0.98 b = 0.51
ξw 0.71 1.14 0.43 1.00 1.32 0.48 0.37 0.63 b = 0.51
σl 0.75 1.05 0.50 1.01 1.04 0.56 0.62 0.79 b = 0.51
ξp 1.00 0.99 0.44 1.02 1.18 0.43 0.43 0.67 b = 0.51
ιw 0.96 1.00 0.44 1.33 4.27 0.47 0.32 0.64 b = 0.50
ιp 1.15 0.89 0.23 1.54 0.78 0.26 0.16 0.33 b = 0.50
ψ 1.03 0.95 0.78 1.01 1.09 0.76 0.56 1.06 b = 0.55
Φ 1.14 0.88 0.56 0.99 1.11 0.58 0.50 1.19 b = 0.51
rπ 0.98 1.03 0.69 0.94 0.91 0.56 0.44 0.77 b = 0.51
ρ 0.96 1.02 0.74 1.04 0.94 0.45 0.30 0.69 b = 0.51
ry 1.08 0.98 0.74 0.94 0.95 0.64 0.60 0.78 b = 0.51
r△y 0.97 0.99 1.71 1.00 0.98 0.87 0.64 0.89 b = 0.50
π̄ 0.59 1.44 0.77 0.94 0.78 0.77 0.77 0.77 b = 0.44
β 0.97 1.03 6.23 1.03 0.99 0.93 1.07 0.99 b = 0.49
l̄ 0.64 1.37 0.88 1.00 0.90 0.90 0.89 0.90 b = 0.45
γ 1.03 0.98 0.27 1.01 1.08 0.56 0.45 0.82 b = 1.55
α 1.03 0.96 1.98 1.00 1.02 3.33 1.17 1.23 b = 0.50
ρa 1.03 0.97 0.57 1.00 1.05 0.99 0.52 0.86 b = 0.54
ρb 1.02 0.98 0.93 1.00 1.00 0.87 0.77 0.89 b = 0.50
ρg 0.97 1.02 0.95 0.99 0.98 0.93 0.86 1.03 b = 0.57
ρI 1.01 0.99 0.53 0.96 0.90 0.64 0.44 0.78 b = 0.50
ρr 1.00 1.00 8.10 1.03 0.98 0.56 0.17 0.74 b = 0.50
ρp 1.02 0.98 0.11 0.88 1.05 0.11 0.11 0.22 b = 0.52
ρw 1.31 0.85 0.52 0.95 1.17 0.58 0.48 0.55 b = 0.51
ρga 1.02 0.98 0.99 1.00 1.00 1.35 1.23 1.60 b = 0.50
µp 1.07 0.96 0.10 1.07 0.84 0.12 0.05 0.21 b = 0.51
µw 0.92 1.05 0.26 0.94 3.05 0.28 0.22 0.41 b = 0.50
σa 1.04 0.96 0.87 1.00 1.04 0.98 0.85 1.36 b = 0.51
σb 1.00 0.99 0.82 1.00 1.00 0.85 1.54 0.92 b = 0.50
σg 1.03 0.98 1.01 1.00 1.03 1.26 1.29 1.76 b = 0.50
σI 0.98 1.02 0.87 0.99 0.97 3.89 0.71 0.86 b = 0.51
σr 0.99 1.00 16.29 1.00 1.00 0.96 1.01 0.98 b = 0.50
σp 0.93 1.05 0.38 2.23 0.56 0.38 0.37 0.40 b = 0.50
σw 0.85 1.15 0.57 1.18 7.20 0.58 0.56 0.64 b = 0.50

Note: Panels A and B show the Cramér-Rao lower bounds after the value of λw or the set of observables is
changed, relative to the original bounds. The original value of λw is 1.5. The original set of observables contains
y, c, I, w, h, π and r. Panel C shows the values of b in the power function aT−b which describes the behavior of
the CR bounds as functions of the sample size T for 200 ≤ T ≤ 1000.

estimates. Thus, the values of the CR bounds on the standard deviations should decrease as

T increases. However, it may be interesting to know the size of the gains one may expect

with respect to different parameters. Furthermore, we could measure the rates at which

the bounds shrink as the sample size grows. It is standard in the econometric literature

to define weak identification as having sample information about one or more parameters

accumulating at rates slower than
√
T (see e.g. Stock and Wright (2000)). Similarly, in the

context of Bayesian estimation, Koop et al. (2013) deem as weakly identified the parameters

whose posterior precision updates at rates slower than
√
T . To see the effect of increasing the

sample size, I compute the CR bounds in 50 points for T between 200 and 1000. The results

are shown in Figures A.2 and A.3 in the Appendix. The plots suggest that the behavior of the

bounds may be well described by a power function of the form aT−b, with a > 0 and b > 0.
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A more formal regression analysis shows that this is indeed the case, and the power function

performs very well both in terms of fitting and forecasting the observed patterns.22 Panel C of

Table 5 shows the values of the b coefficients for all parameters. With the exception of l̄ and π̄,

whose convergence is somewhat slower, and γ, whose convergence rate is significantly faster,

the CR bounds for all other parameters exhibit rates of convergence very close to
√
T . When

the same exercises is repeated for smaller sample sizes, i.e. with T between 50 and 200 - the

rates of convergence for l̄ and π̄ are significantly slower, with b ≈ .3. For all other parameters,

the rates of convergence change very little and in most cases increase when T is smaller. Thus,

with the possible exceptions of l̄ and π̄, none of the other parameters would qualify as weakly

identified in the sense of information accumulating at slower rate than
√
T .23

5 Concluding Remarks

There are two main reasons why we should care about identification in DSGE models. First,

using such models for policy analysis hinges upon having reliably estimated parameters. Ob-

taining such estimates is impossible when identification fails or is very weak. Second, iden-

tification failures are often rooted in the underlying model and the economic theory that

motivates it. Thus, detecting identification problems and investigating the causes leading to

them may provide useful insight to researchers who are not interested in estimation.

This paper develops a new framework for analyzing parameter identification in linearized

DSGE models. By following the steps and applying the tools described here, researchers

can assess how well identified their model parameters are, as well as determine the causes

for identification problems when they occur. Also, the consequences for identification from

changing parameter values, the set of observables, and the sample size can be explored. An

important advantage of the methodology is that it does not involve simulation or estimation.

This makes it suitable for analysis of large and complicated models prior to their empirical

evaluation.

Although this paper focused on the identification of parameters, it is straightforward

to extend the analysis to any other model object that can be expressed as a function of the

parameters. Such objects of interest include impulse response functions, moments of observed

and unobserved variables, variance decompositions, and smoothed structural shocks.

One limitation of this paper’s approach is that it cannot detect certain types of global

22To see how well the power function predicts the values of the CR bounds, I estimated the coefficients
using the first 40 points and compared the predicted values with the last 10 points.

23Qu (2014) characterizes weak identification as having some eigenvalues of the normalized information
matrix converging to zero as T increases. As shown in the Appendix, this condition does not hold in the case
of the SW07 model, although three of the eigenvalues remain close to but strictly above zero as T increases.
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identification problems. It is possible that some parameters are well identified locally, and yet

are unidentifiable or poorly identified globally. Such identification failures are less common,

but not impossible. Unfortunately, they are very difficult to discover in large and highly

non-linear models such as those estimated in the DSGE literature.
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Appendix

Evaluating (3.25)

To evaluate (3.25) we need to compute ∂F (ω)/∂θk. Note that the spectral density matrix for the model in

(2.2)-(2.3) is

F (ω) = CM−BB′M+C ′ (A.1)

where M− := (Im −A exp(−iω))
−1

and M+ := (Im −A exp(iω))
−1

. Denoting the derivative of a matrix

X w.r.t. θi by ∂iX, we have

∂iF (ω) = ∂iCM−BB′M+C ′ +C∂iM
−BB′M+C ′ +CM−∂iBB′M+C ′ +

CM−B∂iB
′M+C ′ +CM−BB′∂iM

+C ′ +CM−BB′M+∂iC
′

Using ∂iX
−1 = −X−1∂iXX−1, we have

∂iM
− = −M− (Im − ∂iA exp(−iω))M− (A.2)

and similarly for M+. Lastly, to complete the evaluation of ∂iF (ω) we need the derivatives of ∂iA, ∂iB, and

∂iC, which can be obtained as shown in Iskrev (2008)

Derivation of (3.11)

The innovation representation of the state space system (2.2)-(2.3) is

ẑt|t−1 = Aẑt−1|t−2 +Kt−1et−1|t−2 (A.3)

xt = s+Cẑt|t−1 + et|t−1 (A.4)

where

Kt = APt|t−1C
′ (CPt|t−1C

′)−1
(A.5)

Pt+1|t = APt|t−1A
′ −Kt

(
CPt|t−1C

′)K ′
t +BB′ (A.6)

Expanding the recursion in equation (A.3) to substitute for ẑt|t−1 in (A.4), we have

xt − s =

t−1∑
h=1

CAhKt−het−h|t−h−1 +CAt−1ẑ1|0 + et|t−1 (A.7)

Using (A.7) and the initial condition ẑ1|0 = 0, it follows that
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x1 − s

x2 − s

x3 − s
...

xT − s


︸ ︷︷ ︸

XT

=



I O . . . O

CAK1 I . . . O

CA2K1 CAK2 . . . O
...

... O

CAT−1K1 CAT−2K2 . . . I


︸ ︷︷ ︸

L



e1|0

e2|1

e3|2
...

eT |T−1


︸ ︷︷ ︸

ET

(A.8)
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Table A.1: Log-linearized equations of the SW07 model (sticky-price-wage economy)

(1) yt = cyct + iyit + rksskyzt + εgt

(2) ct =
λ/γ

1 + λ/γ
ct−1 +

1

1 + λ/γ
Et ct+1 +

wsslss(σc − 1)

cssσc(1 + λ/γ)
(lt − Et lt+1)

− 1−λ/γ
(1+λ/γ)σc

(rt − Et πt+1)− 1−λ/γ
(1+λ/γ)σc

εbt

(3) it =
1

1+βγ(1−σc)
it−1 +

βγ(1−σc)

1+βγ(1−σc) Et it+1 +
1

φγ2(1+βγ(1−σc))
qt + εit

(4) qt = β(1− δ)γ−σc Et qt+1 − rt + Et πt+1 + (1− β(1− δ)γ−σc) Et r
k
t+1 − εbt

(5) yt = ϕp(αk
s
t + (1− α)lt + εat )

(6) kst = kt−1 + zt

(7) zt =
1−ψ
ψ rkt

(8) kt = (1− δ)/γkt−1 + (1− (1− δ)/γ)it + (1− (1− δ)/γ)φγ2(1 + βγ(1−σc))εit

(9) µpt = α(kst − lt)− wt + εat

(10) πt =
βγ(1−σc)

1+ιpβγ(1−σc) Et πt+1 +
ιp

1+βγ1−σc ιp
πt−1 − (1−βγ(1−σc)ξp)(1−ξp)

(1+ιpβγ(1−σc))(1+(ϕp−1)εp)ξp
µpt + εpt

(11) rkt = lt + wt − kt

(12) µwt = wt − σllt − 1
1−λ/γ (ct − λ/γct−1)

(13) wt =
βγ(1−σc)

1+βγ(1−σc)
(Et wt+1 + Et πt+1) +

1
1+βγ(1−σc)

(wt−1 + ιwπt−1)− 1+βγ(1−σc)ιw
1+βγ(1−σc) πt

− (1−βγ(1−σc)ξw)(1−ξw)
(1+βγ(1−σc))(1+(ϕw−1)εw)ξw

µwt + εwt

(14) rt = ρrt−1 + (1− ρ)(rππt + ry(yt − y∗t )) + r△y((yt − y∗t )− (yt−1 − y∗t−1)) + εrt

(15) εat = ρaε
a
t−1 + ηat

(16) εbt = ρaε
b
t−1 + ηbt

(17) εgt = ρgε
a
t−1 + ρgaη

a
t + ηgt

(18) εit = ρIε
I
t−1 + ηIt

(19) εrt = ρrε
r
t−1 + ηrt

(20) εpt = ρpε
p
t−1 + ηpt − µpη

p
t−1

(21) εwt = ρwε
w
t−1 + ηwt − µwη

w
t−1

Note: The model variables are: output (yt), consumption (ct), investment (it), utilized and
installed capital (kst , kt), capacity utilization (zt), rental rate of capital (rkt ), Tobin’s q (qt),
price and wage markup (µpt , µwt ), inflation rate(πt), real wage (wt), total hours worked (lt),
and nominal interest rate (rt). The shocks are: total factor productivity (εat ),
investment-specific technology (εit), government purchases (εgt ), risk premium (εbt), monetary
policy (εrt ), wage markup (εwt ) and price markup (εpt ).
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Table A.2: Log-linearized equations of the SW07 model (flexible-price-wage economy)

(1) y∗t = cyc
∗
t + iyi

∗
t + rksskyz

∗
t + εgt

(2) c∗t =
λ/γ

1 + λ/γ
c∗t−1 +

1

1 + λ/γ
Et c

∗
t+1 +

wsslss(σc − 1)

cssσc(1 + λ/γ)
(l∗t − Et l

∗
t+1)

− 1−λ/γ
(1+λ/γ)σc

r∗t −
1−λ/γ

(1+λλ/γ)σc
εbt

(3) i∗t =
1

1+βγ(1−σc)
i∗t−1 +

ββγ(1−σc)

1+βγ(1−σc)
Et i

∗
t+1 +

1
φγ2(1+βγ(1−σc))

q∗t + εit

(4) q∗t = β(1− δ)γ−σc Et q
∗
t+1 − r∗t + (1− β(1− δ)γ−σc) Et r

k∗
t+1 − εbt

(5) y∗t = ϕp(αk
s∗
t + (1− α)l∗t + εat )

(6) ks∗t = k∗t−1 + z∗t

(7) z∗t = 1−ψ
ψ rk∗t

(8) k∗t = (1− δ)/γk∗t−1 + (1− (1− δ)/γ)i∗t + (1− (1− δ)/γ)φγ2(1 + βγ(1−σc))εit

(9) µp∗t = α(ks∗t − l∗t )− w∗
t + εat

(10) µp∗t = 1

(11) rk∗t = l∗t + w∗
t − k∗t

(12) µw∗t = −σll
∗
t − 1

1−λ/γ (c
∗
t + λ/γc∗t−1)

(13) w∗
t = µw∗t

Note: The model variables are: output (y∗t ), consumption (c∗t ), investment (i∗t ), utilized and
installed capital (ks∗t , k∗t ), capacity utilization (z∗t ), rental rate of capital (rk∗t ), Tobin’s q (q∗t ),
price and wage markup (µp∗t , µw∗

t ), real wage (w∗
t ), and total hours worked (l∗t ).
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Table A.3: Parameters in SW07

parameter interpretation posterior mean

φ investment adjustment cost 5.744
σc elasticity of intertemporal substitution 1.380
λ habit 0.714
ξw wage stickiness 0.701
σl elasticity of labor supply 1.837
ξp price stickiness 0.650
ιw wage indexation 0.589
ιp price indexation 0.244
ψ capacity utilization cost 0.546
Φ fixed cost in production 1.604
rπ monetary policy response to inflation 2.045
ρ interest rate smoothing 0.808
ry monetary policy response to output gap 0.088
r△y monetary policy response to change in output gap 0.224
π̄ steady state inflation 0.785

100
(
β−1 − 1

)
discount factor 0.166

l̄ steady state hours 0.542
γ trend growth rate 0.431
α capital share 0.191
ρa AR productivity shock 0.958
ρb AR risk premium shock 0.217
ρg AR government spending shock 0.976
ρI AR investment specific shock 0.711
ρr AR monetary policy shock 0.151
ρp AR price markup shock 0.891
ρw AR wage markup shock 0.968
ρga productivity shock in G 0.521
µp MA price markup 0.699
µw MA wage markup 0.841
σa standard deviation productivity shock 0.460
σb standard deviation risk premium shock 0.240
σg standard deviation government spending shock 0.529
σI standard deviation investment specific shock 0.453
σr standard deviation monetary policy shock 0.245
σp standard deviation price markup shock 0.140
σw standard deviation wage markup shock 0.244
δ† depreciation rate 0.025
λw† wage markup 1.500
gy† steady state government spending-output ratio 0.180
εp† curvature of goods market aggregator 10.000
εw† curvature of labor market aggregator 10.000

† These parameters are assumed known in SW07.
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Figure A.1: Ratios of frequency domain to exact Cramér-Rao lower bounds
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Figure A.2: Cramér-Rao lower bounds for sample sizes between 200 and 1000.
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Figure A.3: Cramér-Rao lower bounds for sample sizes between 200 and 1000.
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