SPECTRAL DECOMPOSITION OF THE INFORMATION ABOUT LATENT VARIABLES IN DYNAMIC MACROECONOMIC MODELS

Nikolay Iskrev

EEA-ESEM 2023 August 30, 2023

The views expressed do not necessarily reflect the position of Banco de Portugal or the Eurosystem.

• spectral decomposition of information

- spectral decomposition of information
- where, in the spectrum, does information about latent variables come from

- spectral decomposition of information
- where, in the spectrum, does information about latent variables come from
 - ▶ low, business cycle, high frequencies

• improve transparency

- improve transparency
- structural estimation: a black box

- improve transparency
- structural estimation: a black box
- · increase credibility

SOME DEFINITIONS

a variable treated as unobserved when a model is estimated

a variable treated as unobserved when a model is estimated

• no data is available (abstract concepts)

a variable treated as unobserved when a model is estimated

- no data is available (abstract concepts)
 - potential output / output gap
 - natural rates
 - expectations
 - ▶ shocks, etc.

a variable treated as unobserved when a model is estimated

- no data is available (abstract concepts)
 - potential output / output gap
 - natural rates
 - expectations
 - ▶ shocks, etc.
- available data is left out
 - stochastic singularity

a joint probability distribution of the model variables

a joint probability distribution of the model variables

F(y, x)

y - observed, x - latent

a joint probability distribution of the model variables

F(y, x)

y - observed, x - latent

F(x|y)

describes our knowledge of x given y and the model

reduction of uncertainty

reduction of uncertainty

• **unconditional**: information in y about x

 $\operatorname{var}(x) - \operatorname{var}(x|y)$

reduction of uncertainty

• **unconditional**: information in *y* about *x*

 $\operatorname{var}(x) - \operatorname{var}(x|y)$

• **conditional**: information in y_1 about x given y_2

 $\operatorname{var}\left(x|y_2\right) - \operatorname{var}\left(x|y_1, y_2\right)$

INFORMATION IN THE FREQUENCY DOMAIN

INFORMATION IN THE FREQUENCY DOMAIN

- decompose variance into frequency components
- information at frequency ω is the reduction of the variance at ω

INFORMATION GAIN MEASURES

UNCONDITIONAL INFORMATION GAIN

$$\mathrm{IG}_{\boldsymbol{y}\to\boldsymbol{x}}(\omega) = \left(\frac{f_{xx}(\omega) - f_{x|\boldsymbol{y}}(\omega)}{f_{xx}(\omega)}\right) \times 100$$

 $f_{xx}(\omega)$ - spectral density of x at ω

 $f_{x|y}(\omega)$ - conditional spectral density of x given y at ω

• information in \boldsymbol{y} about \boldsymbol{x}

CONDITIONAL INFORMATION GAIN

$$\mathrm{IG}_{\boldsymbol{y}_1 \to x | \boldsymbol{y}_2}(\omega) = \left(\frac{f_{x | \boldsymbol{y}_2}(\omega) - f_{x | \boldsymbol{y}}(\omega)}{f_{xx}(\omega)}\right) \times 100$$

• information in y_1 about x given y_2

INTEGRATED INFORMATION GAIN

$$\mathrm{IG}_{\boldsymbol{y}\to\boldsymbol{x}}(\boldsymbol{\omega}) = \int_{\boldsymbol{\omega}\in\boldsymbol{\omega}} \mathrm{IG}_{\boldsymbol{y}\to\boldsymbol{x}}(\boldsymbol{\omega}) \frac{f_{xx}(\boldsymbol{\omega})}{f_{xx}(\boldsymbol{\omega})} \mathrm{d}\boldsymbol{\omega}$$

$$\boldsymbol{\omega} = \{ \boldsymbol{\omega} : \boldsymbol{\omega} \in [\underline{\omega}, \overline{\omega}] \cup [-\overline{\omega}, -\underline{\omega}] \}$$

INFORMATION GAIN DECOMPOSITION

$$\mathrm{IG}_{\boldsymbol{y}\to\boldsymbol{x}}(\overline{\boldsymbol{\omega}}) = \mathrm{IG}_{\boldsymbol{y}\to\boldsymbol{x}}(\boldsymbol{\omega}^L) \frac{f_{xx}(\boldsymbol{\omega}^L)}{f_{xx}(\overline{\boldsymbol{\omega}})} + \mathrm{IG}_{\boldsymbol{y}\to\boldsymbol{x}}(\boldsymbol{\omega}^{BC}) \frac{f_{xx}(\boldsymbol{\omega}^{BC})}{f_{xx}(\overline{\boldsymbol{\omega}})} + \mathrm{IG}_{\boldsymbol{y}\to\boldsymbol{x}}(\boldsymbol{\omega}^H) \frac{f_{xx}(\boldsymbol{\omega}^H)}{f_{xx}(\overline{\boldsymbol{\omega}})}$$

- $\overline{\omega}$ full spectrum
- ω^L low frequencies
- ω^{BC} BC frequencies (6 32 quarters)
- ω^H high frequencies

APPLICATION

The neo-Fisher effect: Econometric evidence from empirical and optimizing models

Martín Uribe, AEJ: Macroeconomics (2022)

The neo-Fisher effect: Econometric evidence from empirical and optimizing models

Martín Uribe, AEJ: Macroeconomics (2022)

- small-scale New Keynesian model
- 7 shocks:
 - ► 3 monetary policy shocks
 - 2 preference shocks
 - 2 productivity shocks

MONETARY POLICY RULE

$$\frac{1+I_t}{\Gamma_t} = \left[A\left(\frac{1+\Pi_t}{\Gamma_t}\right)^{\alpha_t} \left(\frac{Y_t}{X_t}\right)^{\alpha_y}\right]^{1-\gamma_I} \left(\frac{1+I_{t-1}}{\Gamma_{t-1}}\right)^{\gamma_I} e^{z_t^m},$$

- Γ_t inflation target
- X_t non-stationary productivity
- z_t^m stationary policy shock

INFLATION TARGET

$$\Gamma_t = X_t^m e^{z_t^{m^2}},$$

- X_t^m permanent component, grows at rate g_t^m
- z_t^{m2} transitory component

PREFERENCE SHOCKS

$$\mathbf{E}_{0}\sum_{t=0}^{\infty}\beta^{t}e^{\boldsymbol{\xi}_{t}}\left\{\frac{\left[\left(C_{t}-\delta\tilde{C}_{t-1}\right)\left(1-e^{\boldsymbol{\theta}_{t}}h_{t}\right)^{\boldsymbol{\chi}}\right]^{1-\sigma}-1}{1-\sigma}\right\},$$

PRODUCTIVITY SHOCKS

 $Y_t = e^{\mathbf{z}_t} X_t h_t^{\alpha},$

- z_t stationary productivity
- X_t non-stationary productivity, grows at rate g_t
OBSERVED VARIABLES

- output growth (Δy_t)
- interest rate-inflation differential ($r_t = i_t \pi_t$)
- change in the nominal interest rate (Δi_t)

all observed with measurement errors

INFORMATION ABOUT SHOCKS

SPECTRAL DECOMPOSITION

	total	low	BC	high
preference	93.2	70.4	19.5	3.2
labor supply	1.8	0.2	1.1	0.5
transitory productivity	1.8	0.2	1.1	0.5
permanent productivity	83.5	9.3	32.3	42.0
transitory interest rate	15.5	0.1	3.2	12.2
transitory trend inflation	16.5	5.8	9.7	1.0
permanent trend inflation	18.0	7.2	7.0	3.9

Table: Information gain decomposition across frequency bands

total = low + BC + high(% of prior variance)

Table: Information gain decomposition	across frequency bands
---------------------------------------	------------------------

	total	low	BC	high
preference	93.2	70.4 = 96.4 × .73	19.5 = 88.4 × .22	3.2 = 66.0 × .05
labor supply	1.8	$0.2 = 0.5 \times .33$	$1.1 = 2.3 \times .48$	0.5 = 2.9 × .18
transitory productivity	1.8	$0.2 = 0.5 \times .32$	$1.1 = 2.2 \times .49$	0.5 = 2.9 × .19
permanent productivity	83.5	9.3 = 94.9 × .10	32.3 = 87.1 × .37	42.0 = 78.9 × .53
transitory interest rate	15.5	0.1 = 0.9 × .12	3.2 = 7.9 × .41	12.2 = 25.7 × .47
transitory trend inflation	16.5	5.8 = 12.7 × .46	9.7 = 23.1 × .42	1.0 = 8.3 × .12
permanent trend inflation	18.0	7.2 = 69.4 × .10	$7.0 = 18.3 \times .38$	$3.9 = 7.5 \times .51$

contribution (band) = **IG (band)**
$$\times \frac{\text{variance (band)}}{\text{variance(total)}}$$

T 1 1 1 1						•		
lahle Into	rmation	nain	decom	nneitinn	acrose	troc	າມອກດາ	hande
Table. Inte	Jination	gan	accom	position	201033	1100	lucincy	Danus
		<u> </u>						

	total	low	BC	high
preference	93.2	70.4 = 96.4 × .73	19.5 = 88.4 × .22	3.2 = 66.0 × .05
labor supply	1.8	$0.2 = 0.5 \times .33$	1.1 = 2.3 × .48	$0.5 = 2.9 \times .18$
transitory productivity	1.8	$0.2 = 0.5 \times .32$	1.1 = 2.2 × .49	$0.5 = 2.9 \times .19$
permanent productivity	83.5	$9.3 = 94.9 \times .10$	$32.3 = 87.1 \times .37$	$42.0~=~78.9~\times~\textbf{.53}$
transitory interest rate	15.5	$0.1 = 0.9 \times .12$	$3.2 = 7.9 \times .41$	$12.2 = 25.7 \times .47$
transitory trend inflation	16.5	5.8 = 12.7 × .46	$9.7 = 23.1 \times .42$	$1.0 = 8.3 \times .12$
permanent trend inflation	18.0	$7.2 = 69.4 \times .10$	$7.0 = 18.3 \times .38$	$3.9 = 7.5 \times .51$

contribution (band) = IG (band) $\times \ \frac{\text{variance (band)}}{\text{variance(total)}}$

CONTRIBUTIONS BY OBSERVABLES

Table: Total information gains

	u	ncondition	al		conditional	I
shock	$ riangle y_t$	r_t	$ riangle i_t$	$ riangle y_t$	r_t	$\triangle i_t$
preference	3.5	84.6	66.0	0.3	26.8	7.2
labor supply	0.0	0.6	1.7	0.1	0.1	1.1
transitory productivity	0.0	0.6	1.6	0.1	0.0	1.1
permanent productivity	76.7	0.1	0.1	83.4	0.8	5.7
transitory interest rate	0.7	5.8	11.5	2.2	1.5	9.0
transitory trend inflation	2.2	5.3	0.9	1.7	13.0	8.2
permanent trend inflation	1.8	0.4	6.8	0.5	10.4	15.6

$$\mathrm{IC}_{\boldsymbol{y}_{12} \to x | \boldsymbol{y}_3}(\boldsymbol{\omega}) = \frac{\mathrm{IG}_{\boldsymbol{y}_{12} \to x | \boldsymbol{y}_3}(\boldsymbol{\omega})}{\mathrm{IG}_{y_1 \to x | \boldsymbol{y}_3}(\boldsymbol{\omega}) + \mathrm{IG}_{y_2 \to x | \boldsymbol{y}_3}(\boldsymbol{\omega})} - 1$$

$$\mathrm{IC}_{\boldsymbol{y}_{12} \to x | \boldsymbol{y}_3}(\boldsymbol{\omega}) = \frac{\mathrm{IG}_{\boldsymbol{y}_{12} \to x | \boldsymbol{y}_3}(\boldsymbol{\omega})}{\mathrm{IG}_{y_1 \to x | \boldsymbol{y}_3}(\boldsymbol{\omega}) + \mathrm{IG}_{y_2 \to x | \boldsymbol{y}_3}(\boldsymbol{\omega})} - 1$$

· positive: the contribution of each variable increases when the other is also observed

$$\mathrm{IC}_{\boldsymbol{y}_{12} \to x | \boldsymbol{y}_3}(\boldsymbol{\omega}) = \frac{\mathrm{IG}_{\boldsymbol{y}_{12} \to x | \boldsymbol{y}_3}(\boldsymbol{\omega})}{\mathrm{IG}_{y_1 \to x | \boldsymbol{y}_3}(\boldsymbol{\omega}) + \mathrm{IG}_{y_2 \to x | \boldsymbol{y}_3}(\boldsymbol{\omega})} - 1$$

- positive: the contribution of each variable increases when the other is also observed
- · negative: the contribution of each variable decreases when the other is also observed

$$\mathrm{IC}_{\boldsymbol{y}_{12} \to x | \boldsymbol{y}_3}(\boldsymbol{\omega}) = \frac{\mathrm{IG}_{\boldsymbol{y}_{12} \to x | \boldsymbol{y}_3}(\boldsymbol{\omega})}{\mathrm{IG}_{y_1 \to x | \boldsymbol{y}_3}(\boldsymbol{\omega}) + \mathrm{IG}_{y_2 \to x | \boldsymbol{y}_3}(\boldsymbol{\omega})} - 1$$

- · positive: the contribution of each variable increases when the other is also observed
- negative: the contribution of each variable decreases when the other is also observed
- zero: the contribution doesn't depend on observing the other variable

$$\mathrm{IC}_{\boldsymbol{y}_{12} \to x | \boldsymbol{y}_3}(\boldsymbol{\omega}) = \frac{\mathrm{IG}_{\boldsymbol{y}_{12} \to x | \boldsymbol{y}_3}(\boldsymbol{\omega})}{\mathrm{IG}_{y_1 \to x | \boldsymbol{y}_3}(\boldsymbol{\omega}) + \mathrm{IG}_{y_2 \to x | \boldsymbol{y}_3}(\boldsymbol{\omega})} - 1$$

- · positive: the contribution of each variable increases when the other is also observed
- · negative: the contribution of each variable decreases when the other is also observed
- zero: the contribution doesn't depend on observing the other variable

Note: total information doesn't decrease when complementarity is negative!

Information complementarity - Full spectrum

			(a) F unc	ull spec conditio	ctrum onal		(b) Full spectrum conditional								
Δy_t , r_t	-0.02	-0.01	-0.02	0.01	0.02	0.10	0.08	-0.00	0.10	0.10	0.01	-0.08	-0.06	-0.03	Δy_t , r_t
Δy_t , Δi_t	-0.05	0.03	0.02	0.08	0.16	0.14	-0.11	-0.12	0.06	0.05	0.07	0.17	-0.10	-0.08	$\Delta y_t, \Delta i_t$
r_t , Δi_t	-0.38	-0.26	-0.26	-0.26	-0.23	1.37	1.43	-0.38	-0.25	-0.25	-0.04	-0.23	0.91	1.51	r_t , Δi_t
	ξt	θ_t	z_t	8t	z_t^m	z_t^{m2}	\mathcal{S}_t^m	ξ_t	θ_t	z_t	8t	z_t^m	z_t^{m2}	g_t^m	

Information complementarity - Low frequencies

			(c) Lo unc	w frequ conditio	uencies onal			(d) Low frequencies conditional								
Δy_t , r_t	-0.01	0.02	0.02	0.01	0.06	0.10	0.11	-0.00	0.02	0.02	0.00	-0.02	-0.01	-0.00	$\Delta y_t, r_t$	
Δy_t , Δi_t	-0.02	0.04	0.04	0.03	0.14	-0.10	-0.02	-0.03	0.10	0.10	0.01	-0.06	-0.05	-0.01	$\Delta y_t, \Delta i_t$	
r_t , Δi_t	-0.38	-0.42	-0.43	0.23	0.50	3.78	1.84	-0.38	-0.42	-0.42	-0.29	0.40	3.32	1.86	r_t , Δi_t	
	ξt	θ_t	z_t	8t	z_t^m	z_t^{m2}	\mathcal{S}_t^m	ξ_t	θ_t	z_t	8t	z_t^m	z_t^{m2}	\mathcal{S}_t^m		

Information complementarity - BC frequencies

			(e) B(unc	C frequ conditio	encies mal			(f) BC frequencies conditional								
Δy_t , r_t	-0.08	-0.02	-0.03	0.03	0.05	0.12	0.12	-0.01	0.13	0.13	0.02	-0.11	-0.08	-0.05	$\Delta y_t, r_t$	
Δy_t , Δi_t	-0.09	0.04	0.03	0.11	0.21	0.14	-0.20	-0.12	0.11	0.11	0.09	0.16	-0.16	-0.12	$\Delta y_t, \Delta i_t$	
r_t , Δi_t	-0.42	-0.31	-0.31	-0.31	-0.33	0.96	3.07	-0.43	-0.29	-0.29	-0.07	-0.36	0.52	3.45	r_t , Δi_t	
	ξ_t	θ_t	z_t	8 t	z_t^m	z_t^{m2}	g_t^m	ξ_t	θ_t	z_t	<i>8</i> t	z_t^m	z_t^{m2}	\mathcal{S}_t^m		

Information complementarity - High frequencies

			(g) Hig unc	gh freq conditio	uencies onal		(h) High frequencies conditional								
Δy_t , r_t	-0.03	-0.03	-0.03	0.00	-0.00	0.01	0.02	-0.03	0.09	0.09	0.00	-0.06	-0.07	-0.08	Δy_t , r_t
$\Delta y_t, \Delta i_t$	-0.12	-0.01	-0.01	0.07	0.14	0.26	-0.11	-0.13	-0.00	-0.01	0.07	0.17	0.19	-0.12	$\Delta y_t, \Delta i_t$
r_t , Δi_t	-0.11	-0.06	-0.06	-0.22	-0.19	-0.25	0.18	-0.12	-0.06	-0.06	0.03	-0.19	-0.28	0.17	r_t , Δi_t
	ξt	θ_t	z_t	8t	z_t^m	z_t^{m2}	g_t^m	ξ_t	θ_t	z_t	8t	z_t^m	z_t^{m2}	\mathcal{S}_t^m	

CONCLUSION

• how much information?

- how much information?
- main sources of information?

- how much information?
- main sources of information?
 - observed variables

- how much information?
- main sources of information?
 - observed variables
 - frequencies

Goal: more transparency

• reveals if estimation uses data in ways that *may be unanticipated and undesired by* other researchers and readers (Andrews et al, 2020)

Goal: more transparency

- reveals if estimation uses data in ways that *may be unanticipated and undesired by* other researchers and readers (Andrews et al, 2020)
 - e.g. is Uribe's model suitable for representing the very low/high frequencies in the data?

From "*Quantifying confidence*" by Angeletos, Collard, and Dellas (2018)

The models described above – like other business-cycle models – cater to business-cycle phenomena and therefore **omit** shocks and mechanisms that may account for medium- to long-run phenomena, such as trends in demographics and labor-market participation, structural transformation, regime changes in productivity growth or inflation, and so on.

In a nutshell, there is a risk of **contamination** of the estimates of a model by frequencies that the model was **not designed** to capture.

There is nothing like a latent variable to stimulate the imagination A. Goldberger, quoted by Chamberlain (1990)

Fact: any covariance stationary process can be written as:

$$Y_t = \int_0^{\pi} [a(\omega)\cos(\omega t) + b(\omega)\sin(\omega t)]d\omega$$

Fact: any covariance stationary process can be written as:

$$Y_t = \int_0^{\pi} [a(\omega)\cos(\omega t) + b(\omega)\sin(\omega t)]d\omega$$

where $a(\omega)$ and $b(\omega)$ are independent random variables for all $\omega \in [0, \pi]$

• $a(\omega)$ and $b(\omega)$ determine the contribution of ω for $var(Y_t)$

Fact: any covariance stationary process can be written as:

$$Y_t = \int_0^{\pi} [a(\omega)\cos(\omega t) + b(\omega)\sin(\omega t)]d\omega$$

- $a(\omega)$ and $b(\omega)$ determine the contribution of ω for $var(Y_t)$
- i.e. how important are ω cycles for Y_t

Fact: any covariance stationary process can be written as:

$$Y_t = \int_0^{\pi} [a(\omega)\cos(\omega t) + b(\omega)\sin(\omega t)]d\omega$$

- $a(\omega)$ and $b(\omega)$ determine the contribution of ω for $var(Y_t)$
- i.e. how important are ω cycles for Y_t
 - \blacktriangleright small $\omega \longrightarrow \operatorname{low}$ frequency $\longrightarrow \operatorname{long}$ (slow) cycles

Fact: any covariance stationary process can be written as:

$$Y_t = \int_0^{\pi} [a(\omega)\cos(\omega t) + b(\omega)\sin(\omega t)]d\omega$$

- $a(\omega)$ and $b(\omega)$ determine the contribution of ω for $var(Y_t)$
- i.e. how important are ω cycles for Y_t
 - \blacktriangleright small $\omega \longrightarrow$ low frequency \longrightarrow long (slow) cycles
 - ▶ large ω → high frequency → short (fast) cycles

SPECTRAL DENSITY FUNCTION

spectral density of Y at $\omega \longrightarrow$ the contribution of ω to $var(Y_t)$

Spectral density of AR(1) process, $\alpha = 0$

Spectral density of AR(1) process, $\alpha = 0.1$

Spectral density of AR(1) process, $\alpha = 0.5$

Spectral density of AR(1) process, $\alpha = 0.9$

INFORMATION GAINS IN THE TIME DOMAIN

$$\mathrm{IG}_{\mathbf{Y}_T \to x_t} = \left(\frac{\mathrm{var}(x_t) - \mathrm{var}(x_t | \mathbf{Y}_T)}{\mathrm{var}(x_t)}\right) \times 100,$$

where $1 \leq t \leq T$ and $Y_T = \{y_1, \ldots, y_T\}$.

Table: Conditional information gains

		total			low			BC			high		
shock	$ riangle y_t$	r_t	$\triangle i_t$	Δy_t	r_t	$\triangle i_t$	$ riangle y_t$	r_t	$\triangle i_t$	$ riangle y_t$	r_t	$\triangle i_t$	
preference	0.3	26.8	7.2	0.0	26.4	0.8	0.1	0.5	4.1	0.1	0.0	2.3	
labor supply	0.1	0.1	1.1	0.0	0.0	0.0	0.1	0.0	0.6	0.0	0.0	0.5	
transitory productivity	0.1	0.0	1.1	0.0	0.0	0.0	0.1	0.0	0.6	0.0	0.0	0.5	
permanent productivity	83.4	0.8	5.7	9.3	0.0	0.1	32.2	0.6	2.8	41.9	0.2	2.8	
transitory interest rate	2.2	1.5	9.0	0.0	0.1	0.0	0.4	0.9	0.4	1.8	0.5	8.5	
transitory trend inflation	1.7	13.0	8.2	0.1	5.5	4.3	1.1	7.3	3.7	0.5	0.2	0.2	
permanent trend inflation	0.5	10.4	15.6	0.0	4.7	7.0	0.2	5.2	5.6	0.3	0.5	3.0	

LINEARIZED DSGE MODEL

$$egin{array}{rcl} m{y}_t &=& m{C}(m{ heta})m{v}_{t-1} + m{D}(m{ heta})m{u}_t \ m{v}_t &=& m{A}(m{ heta})m{v}_{t-1} + m{B}(m{ heta})m{u}_t \ m{u}_t \ m{u}_t &=& m{G}(m{ heta})m{u}_{t-1} + m{arepsilon}_t, \quad m{arepsilon}_t \sim \mathcal{N}\left(m{0}, m{\Sigma}_{m{arepsilon}}(m{ heta})
ight) \end{array}$$

All model variables: $m{z}_t = [m{y}_t', m{v}_t', m{u}_t', m{\varepsilon}_t']'$

SPECTRAL DENSITY of z_t

$$oldsymbol{f_{zz}}(\omega) = rac{1}{2\pi}oldsymbol{W}(\omega,oldsymbol{ heta})oldsymbol{\Sigma}_{oldsymbol{arepsilon}}(oldsymbol{ heta})oldsymbol{W}(\omega,oldsymbol{ heta})^*$$

SPECTRAL DENSITY of z_t

$$\boldsymbol{f_{zz}}(\omega) = rac{1}{2\pi} \boldsymbol{W}(\omega, \boldsymbol{\theta}) \boldsymbol{\Sigma}_{\boldsymbol{\varepsilon}}(\boldsymbol{\theta}) \boldsymbol{W}(\omega, \boldsymbol{\theta})^*$$

where

$$egin{aligned} m{W}(\omega,m{ heta}) = & egin{bmatrix} m{C}(m{ heta})e^{-i\omega} & m{D}(m{ heta}) & m{O}_{n_{m{y}},n_{m{u}}} \ m{I}_{n_{m{v}}} & m{O}_{n_{m{v}},n_{m{u}}} & m{O}_{n_{m{v}},n_{m{u}}} \ m{O}_{n_{m{v}},n_{m{u}}} & m{O}_{n_{m{v}},n_{m{u}}} \ m{O}_{n_{m{v}},n_{m{u}}} & m{O}_{n_{m{v}},n_{m{u}}} \ m{O}_{n_{m{v}},n_{m{u}}} & m{O}_{n_{m{v}},n_{m{u}}} \ m{O}_{n_{m{v}},n_{m{u}}} & m{I}_{n_{m{u}}} \ m{O}_{n_{m{v}},n_{m{u}}} & m{I}_{n_{m{u}}} \ m{O}_{n_{m{v}},n_{m{u}}} & m{I}_{n_{m{u}}} \ m{O}_{n_{m{v}},n_{m{u}}} \ m{O}_{n_{m{v}},n_{m{u}}} & m{I}_{n_{m{u}}} \ m{O}_{n_{m{v}},n_{m{u}}} & m{I}_{n_{m{u}}} \ m{O}_{n_{m{v}},n_{m{u}}} \ m{I}_{n_{m{u}}} \ m{O}_{n_{m{v}},n_{m{u}}} \ m{I}_{n_{m{v}}} \ m{O}_{n_{m{v}},n_{m{u}}} \ m{O}_{n_{m{v}},n_{m{u}}} \ m{I}_{n_{m{v}}} \ m{O}_{n_{m{v}},n_{m{u}}} \ m{O}_{n_{m{v}},n_{m{u}}} \ m{I}_{n_{m{v}}} \ m{O}_{n_{m{v}},n_{m{v}}} \ m{O}_{n_{m{v}}$$

• spectral density of any latent variable x:

 $f_{xx}(\omega)$

• conditional spectral density of x given any set of observed variables y:

$$f_{x|y}(\omega) = f_{xx}(\omega) - f_{xy}(\omega)f_{yy}^{-1}(\omega)f_{yx}(\omega)$$