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What?
• spectral decomposition of information

• where, in the spectrum, does information about latent variables come from

▶ low, business cycle, high frequencies
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Why?
• improve transparency

• structural estimation: a black box

• increase credibility



SOME DEFINITIONS



LATENT VARIABLE
a variable treated as unobserved when a model is estimated



LATENT VARIABLE
a variable treated as unobserved when a model is estimated

• no data is available (abstract concepts)



LATENT VARIABLE
a variable treated as unobserved when a model is estimated

• no data is available (abstract concepts)

▶ potential output / output gap

▶ natural rates

▶ expectations

▶ shocks, etc.



LATENT VARIABLE
a variable treated as unobserved when a model is estimated

• no data is available (abstract concepts)

▶ potential output / output gap

▶ natural rates

▶ expectations

▶ shocks, etc.

• available data is left out

▶ stochastic singularity
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MODEL
a joint probability distribution of the model variables

F (y, x)

y - observed, x - latent

F (x|y)

describes our knowledge of x given y and the model
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INFORMATION
reduction of uncertainty

• unconditional: information in y about x

var (x)− var(x|y)

• conditional: information in y1 about x given y2

var (x|y2)− var (x|y1, y2)
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INFORMATION IN THE FREQUENCY DOMAIN

• decompose variance into frequency components

• information at frequency ω is the reduction of the variance at ω



INFORMATION GAIN MEASURES



UNCONDITIONAL INFORMATION GAIN

IGy→x(ω) =

(
fxx(ω)− fx|y(ω)

fxx(ω)

)
× 100

fxx(ω) - spectral density of x at ω

fx|y(ω) - conditional spectral density of x given y at ω

• information in y about x



CONDITIONAL INFORMATION GAIN

IGy1→x|y2
(ω) =

(
fx|y2

(ω)− fx|y(ω)

fxx(ω)

)
× 100

• information in y1 about x given y2



INTEGRATED INFORMATION GAIN

IGy→x(ω) =

∫
ω∈ω

IGy→x(ω)
fxx(ω)

fxx(ω)
dω

ω = {ω : ω ∈ [ω, ω] ∪ [−ω,−ω]}



INFORMATION GAIN DECOMPOSITION

IGy→x(ω) = IGy→x(ω
L)

fxx(ω
L)

fxx(ω)
+ IGy→x(ω

BC)
fxx(ω

BC)

fxx(ω)
+ IGy→x(ω

H)
fxx(ω

H)

fxx(ω)

ω - full spectrum

ωL - low frequencies

ωBC - BC frequencies (6 - 32 quarters)

ωH - high frequencies



APPLICATION
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The neo-Fisher effect: Econometric evidence
from empirical and optimizing models

Martı́n Uribe, AEJ: Macroeconomics (2022)

• small-scale New Keynesian model

• 7 shocks:

▶ 3 monetary policy shocks

▶ 2 preference shocks

▶ 2 productivity shocks



MONETARY POLICY RULE
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• Γt - inflation target
• Xt - non-stationary productivity
• zmt - stationary policy shock



INFLATION TARGET

Γt = Xm
t ez

m2
t ,

• Xm
t - permanent component, grows at rate gmt

• zm2
t - transitory component



PREFERENCE SHOCKS

E0

∞∑
t=0

βteξt
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− 1

1− σ

}
,



PRODUCTIVITY SHOCKS

Yt = eztXth
α
t ,

• zt - stationary productivity

• Xt - non-stationary productivity, grows at rate gt



OBSERVED VARIABLES

• output growth (∆yt)

• interest rate-inflation differential (rt = it − πt)

• change in the nominal interest rate (∆it)

all observed with measurement errors



INFORMATION ABOUT SHOCKS



SPECTRAL DECOMPOSITION



Table: Information gain decomposition across frequency bands

total low BC high

preference 93.2 70.4 19.5 3.2
labor supply 1.8 0.2 1.1 0.5
transitory productivity 1.8 0.2 1.1 0.5
permanent productivity 83.5 9.3 32.3 42.0
transitory interest rate 15.5 0.1 3.2 12.2
transitory trend inflation 16.5 5.8 9.7 1.0
permanent trend inflation 18.0 7.2 7.0 3.9

total = low + BC + high
(% of prior variance)



Table: Information gain decomposition across frequency bands

total low BC high

preference 93.2 70.4 = 96.4 × .73 19.5 = 88.4 × .22 3.2 = 66.0 × .05
labor supply 1.8 0.2 = 0.5 × .33 1.1 = 2.3 × .48 0.5 = 2.9 × .18
transitory productivity 1.8 0.2 = 0.5 × .32 1.1 = 2.2 × .49 0.5 = 2.9 × .19
permanent productivity 83.5 9.3 = 94.9 × .10 32.3 = 87.1 × .37 42.0 = 78.9 × .53
transitory interest rate 15.5 0.1 = 0.9 × .12 3.2 = 7.9 × .41 12.2 = 25.7 × .47
transitory trend inflation 16.5 5.8 = 12.7 × .46 9.7 = 23.1 × .42 1.0 = 8.3 × .12
permanent trend inflation 18.0 7.2 = 69.4 × .10 7.0 = 18.3 × .38 3.9 = 7.5 × .51

contribution ( band ) = IG ( band ) × variance ( band )
variance( total )
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CONTRIBUTIONS BY OBSERVABLES



Table: Total information gains

unconditional conditional

shock △yt rt △it △yt rt △it

preference 3.5 84.6 66.0 0.3 26.8 7.2
labor supply 0.0 0.6 1.7 0.1 0.1 1.1
transitory productivity 0.0 0.6 1.6 0.1 0.0 1.1
permanent productivity 76.7 0.1 0.1 83.4 0.8 5.7
transitory interest rate 0.7 5.8 11.5 2.2 1.5 9.0
transitory trend inflation 2.2 5.3 0.9 1.7 13.0 8.2
permanent trend inflation 1.8 0.4 6.8 0.5 10.4 15.6
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INFORMATION COMPLEMENTARITY

ICy
12
→x|y

3
(ω) =

IGy
12
→x|y

3
(ω)

IGy
1
→x|y

3
(ω) + IGy

2
→x|y

3
(ω)

− 1

• positive: the contribution of each variable increases when the other is also observed

• negative: the contribution of each variable decreases when the other is also observed

• zero: the contribution doesn’t depend on observing the other variable

Note: total information doesn’t decrease when complementarity is negative!
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Information complementarity - Low frequencies



Information complementarity - BC frequencies



Information complementarity - High frequencies
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What identifies (latent variable) x?

• how much information?

• main sources of information?

▶ observed variables

▶ frequencies



Goal: more transparency

• reveals if estimation uses data in ways that may be unanticipated and undesired by
other researchers and readers (Andrews et al, 2020)



Goal: more transparency

• reveals if estimation uses data in ways that may be unanticipated and undesired by
other researchers and readers (Andrews et al, 2020)

▶ e.g. is Uribe’s model suitable for representing the very low/high frequencies in the data?



From “Quantifying confidence” by Angeletos, Collard, and Dellas (2018)

The models described above – like other business-cycle models –
cater to business-cycle phenomena and therefore omit shocks and
mechanisms that may account for medium- to long-run phenomena,
such as trends in demographics and labor-market participation,
structural transformation, regime changes in productivity growth or
inflation, and so on.

In a nutshell, there is a risk of contamination of the estimates of a
model by frequencies that the model was not designed to capture.



There is nothing like a latent variable to stimulate the imagination
A. Goldberger, quoted by Chamberlain (1990)
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Fact: any covariance stationary process can be written as:
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where a(ω) and b(ω) are independent random variables for all ω ∈ [0, π]
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FREQUENCY DOMAIN ANALYSIS OF TIME SERIES
Fact: any covariance stationary process can be written as:

Yt =

∫ π

0
[a(ω) cos(ωt) + b(ω) sin(ωt)]dω

where a(ω) and b(ω) are independent random variables for all ω ∈ [0, π]

• a(ω) and b(ω) determine the contribution of ω for var(Yt)

• i.e. how important are ω cycles for Yt

▶ small ω −→ low frequency −→ long (slow) cycles

▶ large ω −→ high frequency −→ short (fast) cycles



SPECTRAL DENSITY FUNCTION
spectral density of Y at ω −→ the contribution of ω to var(Yt)



Spectral density of AR(1) process, α = 0



Spectral density of AR(1) process, α = 0.1



Spectral density of AR(1) process, α = 0.5



Spectral density of AR(1) process, α = 0.9



INFORMATION GAINS IN THE TIME DOMAIN

IGY
T
→xt =

(
var(xt)− var(xt|YT )

var(xt)

)
× 100,

where 1 ≤ t ≤ T and YT = {y1, . . . ,yT }.
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Table: Conditional information gains

total low BC high

shock △yt rt △it △yt rt △it △yt rt △it △yt rt △it

preference 0.3 26.8 7.2 0.0 26.4 0.8 0.1 0.5 4.1 0.1 0.0 2.3
labor supply 0.1 0.1 1.1 0.0 0.0 0.0 0.1 0.0 0.6 0.0 0.0 0.5
transitory productivity 0.1 0.0 1.1 0.0 0.0 0.0 0.1 0.0 0.6 0.0 0.0 0.5
permanent productivity 83.4 0.8 5.7 9.3 0.0 0.1 32.2 0.6 2.8 41.9 0.2 2.8
transitory interest rate 2.2 1.5 9.0 0.0 0.1 0.0 0.4 0.9 0.4 1.8 0.5 8.5
transitory trend inflation 1.7 13.0 8.2 0.1 5.5 4.3 1.1 7.3 3.7 0.5 0.2 0.2
permanent trend inflation 0.5 10.4 15.6 0.0 4.7 7.0 0.2 5.2 5.6 0.3 0.5 3.0



LINEARIZED DSGE MODEL

yt = C(θ)vt−1 +D(θ)ut

vt = A(θ)vt−1 +B(θ)ut

ut = G(θ)ut−1 + εt, εt ∼ N (0,Σε(θ))

All model variables: zt = [y′
t,v

′
t,u

′
t, ε

′
t]
′



SPECTRAL DENSITY of zt
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SPECTRAL DENSITY of zt

fzz(ω) =
1

2π
W (ω,θ)Σε(θ)W (ω,θ)∗

where

W (ω,θ) =


C(θ)e−iω D(θ) Ony ,nu

Inv Onv ,nu Onv ,nu

Onu,nv Inu Onv ,nu

Onu,ny Onu,nu Inu

×


(
Inv −A(θ)e−iω

)−1
B(θ)

(
Inu −G(θ)e−iω

)−1(
Inu −G(θ)e−iω

)−1

Inu





• spectral density of any latent variable x:

fxx(ω)

• conditional spectral density of x given any set of observed variables y:

fx|y(ω) = fxx(ω)− fxy(ω)f
−1
yy (ω)fyx(ω)


