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What?
• investigate the properties and performance of band-spectral estimators (BSE)

applied to BC models

• Monte Carlo study:

▶ band-spectral estimator

• frequency domain, Whittle likelihood (BC frequencies)

▶ full-spectrum (Whittle) estimator

▶ exact likelihood (time domain) estimator

• assess approximation distortions and information loss
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“Quantifying confidence” by Angeletos, Collard, and Dellas (2018)

The model described above – like other business-cycle models –
cater to business-cycle phenomena and therefore omit shocks
and mechanisms that may account for medium- to long-run
phenomena, such as trends in demographics and labor-market
participation, structural transformation, regime changes in
productivity growth or inflation, and so on.

• ACD estimate their model with BSE using BC frequencies only
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Results
1 Time-domain vs frequency-domain full info estimators. Which is better?

▶ no (good) reason to use full info FD (all freqs) instead of full info TD estimator

2 The BSE (BC) uses less information than full info estimators. How much less? Which
parameters are more/less affected?

▶ significantly less info in BC frequencies for all parameters

3 Can we predict the answer to 2 without MC simulations?

▶ we can reliably predict the loss of efficiency



• Likelihood

• Monte Carlo: setup, results

• Conclusion



Gaussian Likelihood Function



Gaussian Likelihood Function

Let yt be a stationary Gaussian process with zero mean.
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Gaussian Likelihood Function

Whittle approximation: replace ΣT (θ) ≈ ΩT (θ) = F ∗
TST (θ)FT

ℓ(θ;YT ) = −1

2
log det(ΣT (θ))−

1

2
Y ′
TΣ

−1
T (θ)YT (1)

≈ −1

2
log det(ST (θ))−

1

2
(FTYT )

∗S−1(θ)(FTYT ) (2)

≈ −1

2

ωT∑
ω=ω1

{
log det(s(θ, ω)) + ỹ(ω)∗s−1(θ, ω)ỹ(ω)

}
(3)

• FT is Fourier transform matrix
• ST (θ) is block-diagonal



Three estimators

• TD maximizes (full info, KF)

ℓ(θ;YT ) = −1

2
log det(ΣT (θ))−

1

2
Y ′
TΣ

−1
T (θ)YT

• FD maximizes (full info, Whittle, all freqs)

ℓw(θ; IT ) = −1

2

∑
all ω

{
log det(s(θ, ω)) + ỹ(ω)∗s−1(θ, ω)ỹ(ω)

}
• BC maximizes (limited info, Whittle, BC freqs - periodicity between 6 and 32 quarters)

ℓw(θ; I
BC
T ) = −1

2

∑
ω∈ω̄BC

{
log det(s(θ, ω)) + ỹ(ω)∗s−1(θ, ω)ỹ(ω)

}



MONTE CARLO
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New Keynesian DSGE model from “Quantifying confidence” by Angeletos, Collard, and

Dellas (2018)

• sticky prices, habit formation in consumption, adjustment costs in investment,
monetary policy following a Taylor rule

• 9 shocks: permanent and transitory TFP, permanent and transitory ISP, intertemporal
preference, government-spending, monetary policy, news about future TFP,
confidence

• the confidence shock represents perceived bias in the other agents’ expectations
about the level of TFP in each period (higher-order beliefs)

▶ leads to waves of optimism (believing that others are optimistic) and pessimism
(believing that others are pessimistic) that generate business cycle fluctuations
unrelated to fundamentals
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• T=192



DGP
New Keynesian DSGE model from “Quantifying confidence” by Angeletos, Collard, and

Dellas (2018)

• 25 estimated parameters

• six observed variables: GDP, consumption, investment, hours worked, inflation, and
the federal funds rate

• T=192

true DGP for all frequencies



RESULTS
1000 replications
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• 27%, 32%, 53%
• rank corr: 0.98 (TD, FD), 0.95 (TD, BC)
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Can the efficiency loss be predicted?

• Cramér-Rao lower bound (CRLB): if θ̂ is unbiased, then

stdθ̂i ≥
√

{I−1(θ)}ii = crlbθ̂i (4)

I(θ) is the FIM

• is

crlb(BC)

crlb(TD)
≈ std(BC)

std(TD)
?



Efficiency loss
How much less information in the BC frequencies?
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What’s wrong with ρa (and ρn, κR, σn, ...)?

• estimated efficiency loss:
ŝtd(BC)

ŝtd(TD)
=

88.5

63.5
= 1.4

• predicted efficiency loss:
crlb(BC)

crlb(TD)
=

229

71.4
= 3.2



What’s wrong with ρa (and ρn, κR, σn, ...)?

short answer:

• MC overestimates sample information, esp. in BC band.

• Thus, MC underestimates the efficiency loss (loss of sample info).

std(BC) << crlb(BC)

std(TD) < crlb(TD)
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MC-estimated vs CRLB-predicted marginal distribution of ρ̂a
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MC underestimates uncertainty (overestimates information contained in the sample)
due to

• flat likelihood (in-sample information deficiency)
• parameter constraints (out-of-sample parameter information)



ρa: MC vs CRLB as T increases
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1 efficiency benchmark: efficient but infeasible estimator (model good, data wrong)

2 measure of contaminated information when misspecification is ignored

The model described above – like other business-cycle models – cater to
business-cycle phenomena ... (ACD, 2018)

99.9% of BC models are estimated in the time-domain ...
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Why compare band-limited to full-info estimation?

1 efficiency benchmark: efficient but infeasible estimator (model good, data wrong)

2 measure of contaminated information when misspecification is ignored

3 transparency: where does information about θi come from?

▶ model property

▶ which frequencies are most informative and why
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Conclusion
• Full information TD estimator (KF) is superior to the full information FD estimator

▶ lower bias and estimation uncertainty

• band-spectral estimation significantly less efficient
▶ a lot of info outside the BC freqs for all parameters

• FIM analysis is useful to assess the loss of information in band-spectral estimation
▶ (relative) CRLBs accurately predict (relative) estimation uncertainty
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Some Implications
• Evidence for misspecification

▶ estimating a model over different frequency bands leads to different estimates (Qu and
Tkachenko (2012), Sala (2015))

▶ might be true even if the model is not misspecified
• bias
• information deficiencies
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Some Implications
• Calibration

▶ weakly identified parameters are often calibrated

▶ may have to calibrate (many) other parameters for band-spectral estimation
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Some Implications
• Bayesian estimation and importance of priors

▶ the same prior is much more informative with band-spectral estimation



APPENDIX



Sala (2015)

• Monte Carlo experiment with NK DSGE model

• 100 samples T = 170

• KF, All, Low-Pass, High-Pass, BC

• “In sum, the evidence shows that, when using the DSGE model as data-generating
process, maximum likelihood in the frequency domain is equivalent to maximum
likelihood in the time domain, and that the precision of the estimates is still very
good when estimation is performed on frequency bands”



A =


A0 A1 · · · A′

1

A′
1 A0 · · · A′

2
...

...
. . .

...
A1 A2 · · · A0

 ,

BACK



Table: posterior median

ψ utilization elasticity 0.500
ν inverse labor supply elasticity 0.282
α capital share 0.255
φ investment adjustment costs 3.312
b habit persistence 0.758
χ Calvo parameter, 0.732
κR Taylor rule smoothing, 0.198
κπ Taylor rule inflation, 2.271
κy Taylor rule output, 0.121
ρm AR mon. policy 0.647
ρa AR transitory TFP component 0.412
ρn AR news 0.224
ρi AR transitory investment-specific technology 0.374
ρc AR preference 0.888
ρg AR government spending 0.786
ρξ AR confidence 0.833
σP
a std. permanent TFP component 0.406
σT
a std. transitory TFP component 0.347
σn std. news 0.378
σP
i std. permanent investment-specific technology 0.610
σT
i std. transitory investment-specific shocks 5.805
σc std. preference 0.357
σg std. government spending 1.705
σξ std. confidence 0.613
σm std. mon. policy 0.313
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