Multivariate time series

  • univariate - temporal dependence between components of a single series

  • multivariate - temporal (inter)-dependence between components of different series

Definition: A time series process is a sequence of random vectors indexed by time:

(1){zt:t= ...,2,1, 0, 1, 2, ...}={zt}t=

where zt is n1-dimensional vector

Stationarity

Definition: The process {zt}t= is covariance stationary if the first two moments of the joint distribution exist and are time-invariant

  • mean

Ezt=μt=[μ1tμ2tμnt]
  • covariance

cov(zt,ztk)=E(ztμt)(ztkμtk)=Γ(t,tk)=(γ11(t,tk)γ1n(t,tk)γn1(t,tk)γnn(t,tk))
  • {zt}t= is covariance stationary if

μt=μΓ(t,tk)=Γ(k)

are not functions of t

Note:

Γ(k)=cov(zt,ztk)=cov(zt+k,zt)cov(zt,zt+k)=Γ(k)
  • Γ(k) is not symmetric (unless k=0)

  • but since cov(zt+k,zt)=cov(zt,zt+k)

Γ(k)=Γ(k)

follows from (set μ=0 w.l.g.)

Γ(k)=cov(zt+k,zt)=E(zt+kzt)=E(ztzt+k)=(cov(zt,zt+k))=Γ(k)

If

ZT=[z1z2zT]

then

E(ZT)=[μμμ],cov(ZT)=(Γ(0)Γ(1)Γ(T1)Γ(1)Γ(0)Γ(T2)Γ(T1)Γ(T2)Γ(0))(symmetric block Toeplitz matrix)
  • Multivariate Gaussian tme series

ZTN(μ,Σ)
[z1z2zT]N([μμμ],(Γ(0)Γ(1)Γ(T1)Γ(1)Γ(0)Γ(T2)Γ(T1)Γ(T2)Γ(0)))

Number of unique parameters

Γ(0):n(n+1)/2+Γ(1):n2++Γ(T1):n2

with n=5,T=200=>4990

  • time series models allow to represent temporal (inter)dependence parsimoniously

  • by imposing restrictions - reducing the number of unique parameters

  • making estimation feasible

VARMA(p, q) model

A(L)zt=B(L)εt,εtWN(0,Σ)(vector white noise, i.e. E(εt,εtk)=0)A(L)=IA1LApLpB(L)=I+B1L++BqLq

zero auto and cross-auto correlations of the innovations

Ai=(a11,ia1n,ian1,iann,i),Bj=(b11,jb1n,jbn1,jbnn,j)
  • n2(p+q)+n(n+1)/2 unknown parameters

  • in general, difficult to estimate

    • not all parameters are identified

    • have to use numerical optimization

VAR§ model

zt=A1zt1++Apztp+εt,εtWN(0,Σ)
A(L)zt=εt,εtWN(0,Σ)A(L)=IA1LApLp
  • Σij captures all contemporaneous (time t) relationships between zi and zj

  • {Ak}ij captures all dynamic interactions between zit and zj,tk

Stationarity

VAR§ is stationary if all roots of the equation

|A(x)|=|IA1xApxp|=0

are outside the unit circle (|x|>1)

VAR(1) representation of VAR§ process

Zt=ΦZt1+Et
[ztzt1ztp+1]Zt=[A1A2Ap1ApI00000I0]Φ[zt1zt2ztp]Zt1+[εt00]Et
  • Φ - companion matrix

Zt is stationary if all roots x of

|IΦx|=0

are outside the unit circle (|x|>1), which is equivalent to all solutions of

|IλΦ|=0

being |λ|<1, i.e. all eigenvalues of Φ being less than 1 in absolute value.

Eigenvalue decomposition

  • Λ - diagonal matrix of the eigenvalues of A

  • V - matrix of the eigenvectors of A

from

AV=VΛ

we have

A=VΛV1A2=AA=VΛV1VΛV1=VΛ2V1Ah=VΛhV1

if for all eigenvalues |λi|<1,

Λh0 and Ah0as h
  • similar to |α|<1 in zt=αzt1+εt

VAR(1) process

zt=Azt1+εt

From VAR parameters to moments of zt

  • what are the VAR parameters?

  • mean

Ezt=AEzt1+Eεt=0
  • covariance

zt=Azt1+εtztzt=(Azt1+εt)(Azt1+εt)

Since E(zt1εt)=0

E(ztzt)=AE(zt1zt1)A+E(εtεt)

or

Γ(0)=AΓ(0)A+Σandvec(Γ(0))=(IAA)1vec(Σ)
  • follows from vec(ABC)=(CA)vec(B)

  • autocovariances

E(ztzt1)=AE(zt1zt1)+E(εtzt1)
  • lag 1

Γ(1)=AΓ(0)
  • lag 2

Γ(2)=AΓ(1)=A2Γ(0)
  • lag h

Γ(h)=AhΓ(0)

From moments of zt to VAR parameters

Γ(1)=AΓ(0)A=Γ(1)Γ(0)1Γ(0)=AΓ(0)A+ΣΣ=Γ(0)Γ(1)Γ(0)1Γ(1)

Non-zero mean Ezt=μ0

zt=a0+Azt1+εtμ=a0+Aμμ=(IA)1a0

and

Ez¯t=E(ztμ)=0

Note For the moments of a VAR§ model, use the VAR(1) representation, and apply the selection matrix

s=[I,0,,0]

to obtain the autocovariances of zt from the autocovariances of Zt

since

zt=sZt
  • Ezt=sEZt

  • var(zt)=svar(Zt)s

  • cov(zt,ztk)=scov(Zt,Ztk)s

Estimation

We can write VAR§

zt=a0+A1zt1++Apztp+εt,εtWN(0,Σ)

as

zt=Axt1+εt

where A=[a0,A1,,Ap], and xt1=[1,zt1,,ztp]

Assume a pre-sample z0,z1,,zp+1 is given. (alternatively, re-define T)

Then, we have

Z=AX+U

where

  • Z=[z1,,zT] is n×T

  • X=[x0,,xT1] is n(p+1)×T

  • U=[ε1,,εT] is n×T

OLS estimation

A^=ZX(XX)1Σ^=1Tnp1U^U^U^=ZA^X

Asymptotic distribution

vec(A^)aN(vec(A),(XX)1Σ^)

Notes:

  • the rows of A can be estimated with OLS equation by equation

  • also equivalent to conditional MLE, assuming that εtN(0,Σ)

  • A^ has a small-sample bias, which can be corrected for analytically (when the VAR has only intercept) or using bootstrap (when a deterministic trand is included)

Choice of p

  • define a set of models - select pmin and pmax

  • estimate each one and compute IC§

  • pick the one with lowest IC§ value

Most commonly used ICs:

AIC=ln|Σ^ml(p)|+2T(pn2+n)Akaike’s Information CriterionBIC=ln|Σ^ml(p)|++ln(T)T(pn2+n)Bayesian Information Criterion

Notes

  • For ICs to be comparable for different p, the sample has to be the same (set t=pmax+1,,T)

  • Σ^ml(p)=1TU^U^=Tnp1TΣ^ols(p)

  • typically, pmin=12 for monthly and pmin=4 for quarterly data

Forecasting

zt=Azt1+εt,zt+1=Azt+εt+1zt+2=A2zt+Aεt+1+εt+2zt+h=Ahzt+Ah1εt+1++εt+h

Optimal forecast given information at T:

E(zT+1|zT)=AzTE(zT+h|zT)=AhzT

Optimal forecast given information at T+1:

E(zT+h|zT+1)=Ah1zT+1=Ah1(AzT+εT+1)=AhzT+Ah1εT+1=E(zT+h|zT)+Ah1(zT+1AzT)=E(zT+h|zT)+Ah1(zT+1E(zT+1|zT))

Optimal forecast update:

E(zT+h|zT+1)E(zT+h|zT)=Ah1(zT+1E(zT+1|zT))1-step ahead forecast error

h-step-ahead forecast error:

zT+hE(zT+h|zT)=Ah1εt+1++Aεt+h1+εt+h

with

E(zT+hE(zT+h|zT))=0cov(zT+hE(zT+h|zT))=Ah1Σ(Ah1)++AΣA+Σ

Note: as in the univariate case, we can write VAR(p) as VMA(). For VAR(1)

zt=A(L)1εt=εt+Aεt1+A2εt2+

and

cov(zt)=Γ(0)=Σ+AΣA+A2Σ(A2)+

As h

E(zT+h|zT)0(unconditional mean of zt)cov(zT+hE(zT+h|zT))Γ(0)(unconditional covariance of zt)

For VAR§ - use the VAR(1) representation

Zt=ΦZt1+Et
  • forecast of zT+h (using the selection matrix s)

E(zT+h|ZT)=sE(ZT+h|ZT)
  • variance of forecast errors

cov(zT+hE(zT+h|ZT))=scov(ZT+hE(ZT+h|ZT))s

Impulse response functions

From the VMA representation of of VAR(1) model

zt+h=εt+h+Aεt+h1+A2εt+h2++Ahεt+

we have

zt+hεt=Ah
  • Note that εt is a vector

  • typically, we want to know the effect of a shock on a variable (for example monetary policy on inflation)

  • here cov(εt)=Σ, i.e. εit and εjt are correlated

  • εt are not shocks (statistical innovations, residuals, forecast errors)

(orthogonalized ) impulse response functions

Since Σ is positive definite matrix, there exists a matrix B0 such that

B01(B01)=ΣB0ΣB0=I

Then

ut=B0εtutWN(0,I)
  • uit and ujt are uncorrelated (orthogonal) for all ij

Using εt=B01ut in the MA representation

zt+h=εt+h+Aεt+h1+A2εt+h2++Ahεt+=B01ut+h+AB01ut+h1+A2B01ut+h2++AhB01ut+

and therefore

zt+hut=AhB01Ψh

Since uit and ujt are uncorrelated, the k,l element of Ψh gives the response of zk,t+h to a (one standard deviation shock to ul,t)

zk,t+hult=ψkl,h

and the l column of Ψh gives the response of zt+h to a one standard deviation shock to ul,t

zt+hult=ψl,h

ψl,h is the l-th column of AhB01

From VAR§ to Structural VAR§ (and vice versa)

zt=a0+A1zt1++Apztp+εt,εtWN(0,Σ)zt=a0+A1zt1++Apztp+B01ut(using ut=B0εt)B0zt=B0a0+B0A1zt1++B0Apztp+ut,(pre-multiply by B0)B0zt=b0+B1zt1++Bpztp+ut,utWN(0,I)
  • B0 captures contemporaneous (time t) interactions among variables

  • ut are orthogonal shocks: ui,t only affects zi,t contemporaneously

  • impulse responses

zt+huit

Identification

  • We can estimate the reduced-form coefficients a0, A1, … Ap and Σ

  • and compute reduced-form MA representation of z

  • to compute impulse responses to structura shocks we need B01

  • B01 is not identified from

B01(B01)=Σ

by symmetry Σ has n(n+1)/2 unique elements n(n+1)/2 equations, but B0 has n2 unknown elements

  • need to impose restrictions on either B0 or B01 in order to identify it

  • the restrictions must be implied by economic theory.

Types of identifying restrictions

  • short-run restrictions

  • long-run restrictions

  • sign restrictions

  • combinations of short/long-run restrictions, sign restrictions

Short-run restrictions:

  • time t impact of structural shocks εt=B01ut

[ε1,tε2,tεn,t]=[b01,1b01,2b01,nb02,1b02,2b02,nb0n,1b0n,2b0n,n]B01[u1,tu2,tun,t]
  • time t interactions among variables B0zt=+ut,

[b0,11b0,12b0,1nb0,21b0,22b0,2nb0,n1b0,n2b0,nn]B0[z1,tz2,tzn,t]=+[u1,tu2,tun,t]

Long-run restrictions:

MA representation of zt

zt+h=εt+h+Aεt+h1+A2εt+h2++Ahεt+=B01ut+h+AB01ut+h1+A2B01ut+h2++AhB01ut+

The cumulative impuse responses of shocks in t on zt, zt+1, … are given by

(I+A+A2+A3+)B1=A(1)1B01
  • if zt contains growth rates (e.g. of GDP), the cumulative response givs the permanent effect on the level

  • common long-run restrictions: some shocks don’t have permanent effect on some variables (nominal shocks on real variabls)

    • some elements of A(1)1B01 are 0

Sign restrictions:

If B0 is such that

B01(B01)=Σ

then for any orthogonal matrix Q (QQ=QQ=I)

we have

(B01Q)(B01Q)=Σ

There are inifitely many such matrices.

  • find the set of solutions that satisfy sign restrictions implied by theory (monetary policy shock raises it and lowers πt and yt)

  • find all matrices Q such that B01=PQ meets those restrictions, where P is the Cholesky factor of Σ, and Q is orthogonal matrix.

    • every real-valued symmetric positive-definite matrix has a unique Cholesky decomposition:

Σ=PP

There are different ways to generate Q

For example, for n=2 candidates Q can be generated using

Q=[cos(θ)sin(θ)sin(θ)cos(θ)]

and θ(0,2π)

Can also use the QR decomposition of a random matrix H such that HijN(0,1)

  • with sign restrictions we get a set of impulse responses for each shock and variable (set vs point identfication)